

AH49F

General Description

The AH49F is a small, versatile linear Hall-effect device that is operated by the magnetic field from a permanent magnet or an electromagnet. The output voltage is set by the supply voltage and varies in proportion to the strength of the magnetic field.

The integrated circuitry features low noise output, which makes it unnecessary to use external filtering components. It also includes precision resistors to provide increased temperature stability and accuracy. The operating temperature range of these linear Hall sensors is -40°C to 105°C, appropriate for commercial, consumer, and industrial environments.

The AH49F is available in standard TO-92S and SOT-23-3 packages.

Features

- Miniature Construction
- Power Consumption of 3.0mA at V_{CC}=5V for Energy Efficiency
- Single Current Sourcing Output
- Linear Output for Circuit Design Flexibility
- Low Noise Output Virtually Eliminates the Need
- for Filtering
- A Stable and Accurate Output
- Temperature Range: -40°C to 105°C
- Responds to Either Positive or Negative Gauss
- The Maximum Instantaneous Supply Voltage
- Up to 50V
- High ESD Rating: 6000V (Human Body Model) 600V (Machine Model)

Application

- Current Sensing
- Motor Control
- Position Sensing
- Magnetic Code Reading
- Rotary Encoder
- Ferrous Metal Detector
- Vibration Sensing
- Liquid Level Sensing
- Weight Sensing

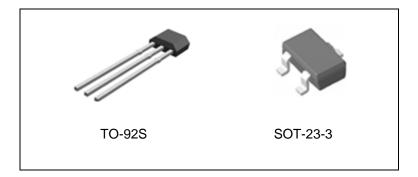


Figure 1. Package Types of AH49F

AH49F

Pin Configuration

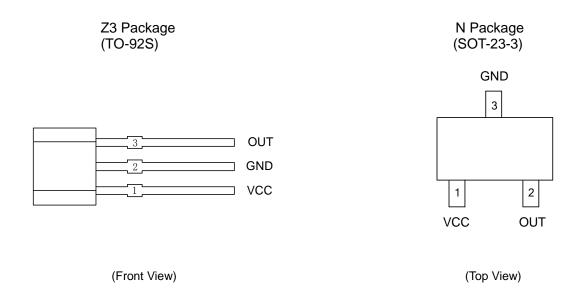


Figure 2. Pin Configuration of AH49F

Pin Description

Pin Number		Pin Name	Eunation		
TO-92S	SOT-23-3	Fili Name	Function		
1	1	VCC	Power supply pin		
2	3	GND	Ground pin		
3	2	OUT	Output pin		

AH49F

Functional Block Diagram

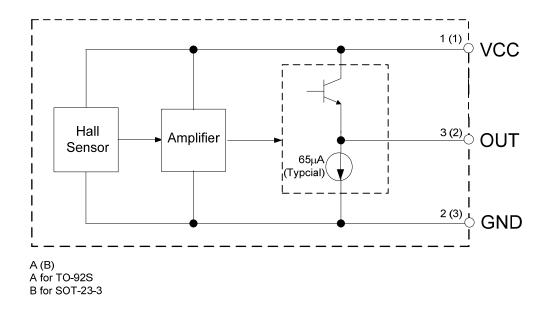
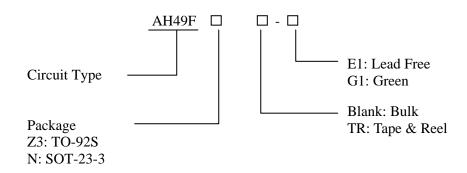



Figure 3. Functional Block Diagram of AH49F

Ordering Information

Package	Temperature Range	Part N	Marking ID		Packing	
		Lead Free	Green	Lead Free	Green	Type
TO-92S	-40 to 105°C	AH49FZ3-E1	AH49FZ3-G1	49FE	49FG	Bulk
SOT-23-3			AH49FNTR-G1		GT6	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "G1" suffix in the part number, are RoHS compliant and green.

AH49F

Absolute Maximum Ratings (Note 1)

Parameter		Symbol	Value	Unit	
Supply Voltage		V_{CC}	10	V	
Instantaneous Supply Voltage		V _{CC_INST}	50	V	
Power Dissipation	TO-92S	D	400		
	SOT-23-3	P_{D}	230	mW	
Ambient Temperature		T_{A}	-40 to 125	°C	
Storage Temperature		T_{STG}	-50 to 150	°C	
ESD (Human Body Model)			6000	V	
ESD (Machine Model)			600	V	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions (T_A=25°C)

Parameter	Symbol	Min	Max	Unit
Supply Voltage	V_{CC}	3	8	V
Operating Temperature	T_{OP}	-40	105	°C

AH49F

Electrical Characteristics

 $V_{CC}=5V$, $T_A=25$ °C, unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Current	I_{CC}		2	3	4	mA
Quiescent Output Voltage	V_{NULL}	B=0 (Gauss)	2.25	2.5	2.75	V
Output Voltage Sensitivity	V _{SEN}	B=0 to ±600 (Gauss)	1.7	2.1	2.5	mV/Gauss
Output Voltage Span	$V_{\text{OUT_S}}$		1.0 to (V _{CC} -1.0)	0.8 to (Vcc-0.8)		V
Output Resistor	R_{OUT}			60	120	Ω
Linear Magnetic Range	В		±500	±800		Gauss
Linearity of Span				0.7		%
Output Noise		Bandwidth=10Hz to 10kHz		90		μV

Transferring Characteristics (V_{CC}=5V)

When there is no outside magnetic field (B=0Gauss), the quiescent output voltage is one-half the supply voltage in general.

For TO-92S package, if a south magnetic pole approaches the front face (the side with marking ID) of the Hall effect sensor, the circuit will drive the output voltage higher. In contrary, a north magnetic pole will drive the output voltage lower. The variations of voltage level up or down are symmetrical. Because the SOT-23-3 is reversed packaging with TO-92S, so the magnetic performance is also reversed. Therefore, if the reversed magnetic pole approaches the front face, the output is the same as TO-92S package. Greatest magnetic sensitivity is obtained with a supply voltage of 8V, but at the cost of increased supply current and a slight loss of output symmetry. So, it is not recommended to work in such condition unless the

output voltage magnitude is a main issue. The output signal can be capacitively coupled to a next-level amplifier for further amplifying if the changing frequency of the magnetic field is high.

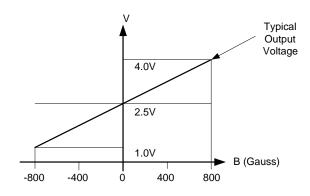


Figure 4. Transferring Characteristic of AH49F

For SOT-23-3

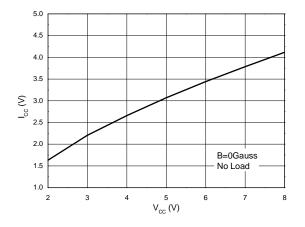

For TO-92S

Figure 5. Magnetic Characteristic of AH49F

AH49F

Typical Performance Characteristics

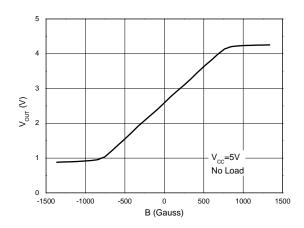
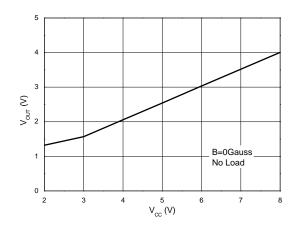



Figure 6. Supply Current vs. Supply Voltage

Figure 7. Output Voltage vs. Magnetic Field

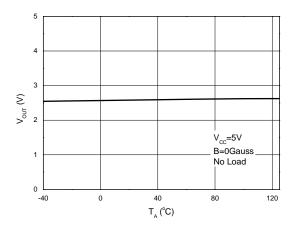
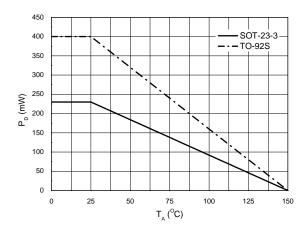


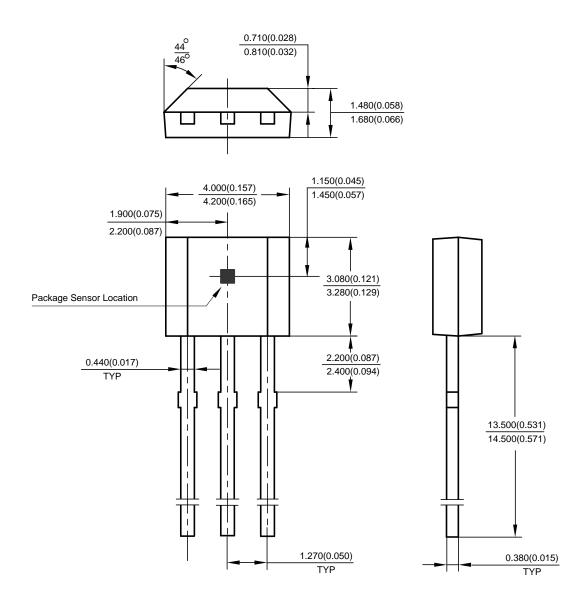
Figure 8. Output Voltage vs. Supply Voltage

Figure 9. Output Voltage vs. Ambient Temperature

AH49F

Typical Performance Characteristics (Continued)




Figure 10. Power Dissipation vs. Ambient Temperature

AH49F

Mechanical Dimensions

TO-92S Unit: mm(inch)

AH49F

Unit: mm(inch)

Mechanical Dimensions (Continued)

SOT-23-3

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen,

China Tel: +86-755-8826 7951 Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788