	NZ BASIC HIGH CONTACT CAPACITY, PRECISE OPERATION	(AM1) SWITCHES

FEATURES

-15 A High current switching capacity and high precision

- Wide allowance of operating speed
- Versatile variety of actuators
- UL/CSA approved

TYPICAL APPLICATION

- General industrial machinery
- Medical equipment
- Measuring instruments
- Transportation equipment
- Home electric appliances

ORDERING INFORMATION

TERMINAL VARIATION

Standard types, reversed action types and oil tight types are available in two terminal designs, solder and screw terminals, as shown in the above columns:
Differences in dimension between solder and screw terminals are as follows;
mm inch
Solder terminal

Screw terminal

AM1

PRODUCT TYPES

1. Standard type

Actuator	Solder terminal	Screw terminal
Pin plunger	AM1100K	AM1300K
Over travel plunger	AM1105K	AM1305K
Compact over travel plunger	AM1106K	AM1306K
Panel mount plunger	AM1107K	AM1307K
Panel mount roller plunger	AM110811K	AM130811K
Panel mount cross roller plunger	AM110812K	AM130812K
Flexible leaf lever	AM1101K	AM1301K
Flexible roller leaf lever	AM1103K	AM1303K
Rigid lever	AM1501K	AM1701K
Rigid short roller lever	AM1504K	AM1704K
Rigid roller lever	AM1503K	AM1703K
One way type•Rigid short roller lever	AM1544K	AM1744K
One way type•Rigid roller lever	AM1543K	AM1743K
Reversed action type•Rigid lever	AM1531K	AM1731K
Reversed action type \cdot Rigid short roller lever	AM1534K	AM1734K
Reversed action type•Rigid roller lever	AM1533K	AM1733K
2. Oil tight types		Screw terminal
	Solder terminal	
Rigid lever	AM1511K	AM1711K
Rigid short roller lever	AM1514K	AM1714K
Rigid roller lever	AM1513K	
Rens13K		

Remarks: 1. Standard part number indicates UL/CSA mark.
2. Standard packing for inner carton: 20cps.

SPECIFICATIONS

1. Contact Rating

Type	Voltage	Resistive load $(\cos \phi=1)$	Inductive load ($\cos \phi=0.6$ to 0.7)	Motor or lamp load	
				N.C.	N.O.
Standard types One way types Reversed action types	125 V AC	15 A	10 A	4 A	2 A
	250 V AC	15 A	10 A	3 A	1.5 A
	480 V AC	3 A	2 A	1.5 A	0.75 A
	125 V DC	0.5 A	0.05 A	-	-
	250 V DC	0.25 A	0.03 A	-	-
Oil tight types	125 V AC	15 A	10 A	3 A	1.5 A
	250 V AC	10 A	6 A	2 A	1.0 A
	125 V DC	0.5 A	0.05 A	-	-

2. Characteristics

Item			Specifications
Expected life	Mechanical	Pin plunger types	Min. $2 \times 10^{7}(60 \mathrm{cpm})$ (at rated overtravel) (Oil tight: Min. 1.5×10^{6})
		Other types	Min. $5 \times 10^{6}(60 \mathrm{cpm})$ (at rated overtravel) (Oil tight: Min. 1.5×10^{6})
	Electrical (at max. overtravel)		Min. $5 \times 10^{5}(20 \mathrm{cpm})$ (at rated load) (Oil tight: Min. 1.5×10^{5})
Insulation resistance			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Dielectric strength	Between open terminals		1,000 Vrms for 1 min .
	Between each terminal and other exposed metal parts		2,000 Vrms for 1 min .
	Between each terminal and ground		2,000 Vrms for 1 min .
Contact resistance (initial) (by voltage drop, 1 A, 6-8 V DC)			Max. $50 \mathrm{~m} \Omega$
Vibration resistance (Pin plunger type)			Single amplitude: $0.75 \mathrm{~mm}, 10$ to 55 Hz (contact opening: max. 1 msec .)
Shock resistance	Pin plunger types		Min. $300 \mathrm{~m} / \mathrm{s}^{2}\{30 \mathrm{G}\}$ (contact opening: max. 1 msec .)
	Other types		Min. $50 \mathrm{~m} / \mathrm{s}^{2}\{5 \mathrm{G}\}$ (contact opening: max. 1 msec .)
Allowable operating speed (at no load)			0.1 to $1,000 \mathrm{~mm} / \mathrm{sec}$. (at pin plunger position)
Max. operating cycle rate (at no load)			240 cpm
Ambient temperature			$-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}-13^{\circ} \mathrm{F}$ to $+176^{\circ} \mathrm{F}$ (no freezing at low temperature)
Ambient humidity			Max. 85\% R.H.
Weight			Approx. 20 to 55 g .705 to 1.940 oz

OPERATING CHARACTERISTICS

Standard types

Types of actuator	Pin plunger	Overtravel plunger	Compact overtravel plunger	Panel mount plunger
Operating force, max.	$3.63 \mathrm{~N}\{370 \mathrm{gf}\}$			
Release force, min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$			
Pretravel, max. mm inch	0.4 .016			
Movement differential, max. mm inch	0.05 .002			
Overtravel, min. mm inch	0.13 .005	1.5 .059	1.5 .059	5.6 .220
Operating position, mm inch	15.9 $\pm 0.4 .626 \pm .016$	$28.2 \pm 0.51 .110 \pm .020$	$21.2 \pm 0.5 .835 \pm .020$	$21.8 \pm 0.8 .858 \pm .031$

Types of actuator	Panel mount roller plunger	Panel mount cross roller plunger	Flexible leaf lever	Flexible roller leaf lever
Operating force, max.	$3.63 \mathrm{~N}\{370 \mathrm{gf}\}$	$1.47 \mathrm{~N}\{150 \mathrm{gf}\}$		
Release force, min.	$1.12 \mathrm{~N}\{114 \mathrm{gf}\}$	$0.14 \mathrm{~N}\{14 \mathrm{gf}\}$		
Pretravel, max. mm inch	0.4 .016	4.157		
Movement differential, max. mm inch	0.05 .002	1.3 .051		
Overtravel, min. mm inch	3.6 .142	1.6 .063		
Operating position, mm inch	$33.3 \pm 1.21 .311 \pm .047$	$17.5 \pm 0.8 .689 \pm .031$	$28.6 \pm 0.81 .126 \pm .031$	

Standard types (cont' d)

Types of actuator	Rigid lever	Rigid short roller lever	Rigid roller lever
Operating force, max.	$0.69 \mathrm{~N}\{70 \mathrm{gf}\}$	$1.57 \mathrm{~N}\{160 \mathrm{gf}\}$	$0.98 \mathrm{~N}\{100 \mathrm{gf}\}$
Release force, min.	$0.14 \mathrm{~N}\{14 \mathrm{gf}\}$	$0.42 \mathrm{~N}\{43 \mathrm{gf}\}$	$0.2 \mathrm{~N}\{20 \mathrm{gf}\}$
Pretravel, max. mm inch	10.394	4.5 .177	7.5 .295
Movement differential, max. mm inch	1.3 .051	0.7 .028	1.3 .051
Overtravel, min. mm inch	5.6 .220	2.4 .094	3.6 .142
Operating position, mm inch	$19.1 \pm 0.7 .752 \pm .028$	$30.2 \pm 0.41 .189 \pm .016$	$30.2 \pm 0.71 .189 \pm .028$

One way types

Types of actuator	Rigid short roller lever	Rigid roller lever
Operating force, max.	$2.23 \mathrm{~N}\{227 \mathrm{gf}\}$	$1.67 \mathrm{~N}\{170 \mathrm{gf}\}$
Release force, min.	$0.42 \mathrm{~N}\{43 \mathrm{gf}\}$	$0.42 \mathrm{~N}\{43 \mathrm{gf}\}$
Pretravel, max. mm inch	3.5 .138	4.5 .177
Movement differential, max. mm inch	0.4 .016	0.5 .020
Overtravel, min. mm inch	1.5 .059	2.4 .094
Free position, max. mm inch	31.81 .252	43.31 .705
Operating position, mm inch	$30.2 \pm 0.41 .189 \pm .016$	$41.3 \pm 0.41 .626 \pm .016$

Reversed action types

Types of actuator	Rigid lever	Rigid short roller lever	Rigid roller lever
Operating force, max.	$1.67 \mathrm{~N}\{170 \mathrm{gf}\}$	$5.30 \mathrm{~N}\{540 \mathrm{gf}\}$	$2.35 \mathrm{~N}\{240 \mathrm{gf}\}$
Release force, min.	$0.27 \mathrm{~N}\{28 \mathrm{gf}\}$	$1.67 \mathrm{~N}\{170 \mathrm{gf}\}$	$0.56 \mathrm{~N}\{57 \mathrm{gf}\}$
Pretravel, max. mm inch	5.0 .197	2.5 .098	3.6 .142
Movement differential, max. mm inch	0.9 .035	0.4 .016	0.7 .028
Overtravel, min. mm inch	5.6 .220	2.0 .079	4.0 .157
Operating position, mm inch	$19.1 \pm 0.8 .752 \pm .031$	$30.2 \pm 0.51 .189 \pm .020$	$30.2 \pm 0.81 .189 \pm .031$

Oil tight types

Types of actuator	Rigid lever	Rigid short roller lever	Rigid roller lever
Operating force, max.	$0.69 \mathrm{~N}\{70 \mathrm{gf}\}$	$1.67 \mathrm{~N}\{170 \mathrm{gf}\}$	$0.98 \mathrm{~N}\{100 \mathrm{gf}\}$
Release force, min.	$0.14 \mathrm{~N}\{14 \mathrm{gf}\}$	$0.42 \mathrm{~N}\{43 \mathrm{gf}\}$	$0.20 \mathrm{~N}\{20 \mathrm{gf}\}$
Pretravel, max. mm inch	10.394	4.5 .177	7.5 .295
Movement differential, max. mm inch	1.5 .059	0.7 .028	1.3 .051
Overtravel, min. mm inch	5.6 .220	2.4 .094	3.6 .142
Operating position, mm inch	$19.1 \pm 0.7 .752 \pm .028$	$30.2 \pm 0.41 .189 \pm .016$	$30.2 \pm 0.71 .189 \pm .028$

AM1

DIMENSIONS

1. Standard types

Pin plunger

AM1100K (Solder terminal) AM1300K (Screw terminal)

Operating force, max.	3.63 N $\{370 \mathrm{gf}\}$
Release force, min.	1.12 N $\{114 \mathrm{gf}\}$
Pretravel, max. mm inch	0.4 .016
Movement differential, max. mm inch	0.05 .002
Overtravel, min. mm inch	0.13 .005
Operating position, mm inch	15.9 ± 0.4

Overtravel plunger

AM1105K (Solder terminal) AM1305K (Screw terminal)

Operating force, max.	3.63 N $\{370 \mathrm{gf}\}$
Release force, min.	1.12 N $\{114 \mathrm{gf}\}$
Pretravel, max. mm inch	0.4 .016
Movement differen- tial, max. mm inch	0.05 .002
Overtravel, min. mm inch	1.5 .059
Operating position, mm inch	28.2 ± 0.5 $1.110 \pm .020$

Compact over plunger

AM1106K (Solder terminal) AM1306K (Screw terminal)

Operating force, max.	3.63 N $\{370 \mathrm{gf}\}$
Release force, min.	1.12 N $\{114 \mathrm{gf}\}$
Pretravel, max. mm inch	0.4 .016
Movement differential, max. mm inch	0.05 .002
Overtravel, min. mm inch	1.5 .059
Operating position, mm inch	21.2 ± 0.5 $.835 \pm .020$

Panel mount plunger

AM1107K (Solder terminal) AM1307K (Screw terminal)

Operating force, max.	3.63 N $\{370 \mathrm{gf}\}$
Release force, min.	1.12 N $\{114 \mathrm{gf}\}$
Pretravel, max. mm inch	0.4 .016
Movement differential, max. mm inch	0.05 .002
Overtravel, min. mm inch	5.6 .220
Operating position, mm inch	21.8 ± 0.8

AM110811K (Solder terminal)
AM130811K (Screw terminal)

\(\left.$$
\begin{array}{l|c}\hline \begin{array}{l}\text { Operating force, } \\
\text { max. }\end{array} & \begin{array}{c}3.63 \mathrm{~N} \\
\{370 \mathrm{gf}\}\end{array} \\
\hline \begin{array}{l}\text { Release force, } \\
\text { min. }\end{array}
$$ \& 1.12 \mathrm{~N}

\{114 \mathrm{gf}\}\end{array}\right]\)| Pretravel,
 max. mm inch |
| :--- |
| Movement differential,
 max. mm inch |
| Overtravel,
 min. mm inch |
| Operating position,
 mm inch |

Panel mount cross roller plunger

AM110812K (Solder terminal) AM130812K (Screw terminal)

Operating force, max.	3.63 N $\{370 \mathrm{gf}\}$
Release force, min.	1.12 N
$\{114 \mathrm{gf}\}$	
Pretravel, max. mm inch	0.4 .016
Movement differential, max. mm inch	0.05 .002
Overtravel, min. mm inch	3.6 .142
Operating position, mm inch	33.3 ± 1.2 $1.311 \pm .047$

Dimensions and Operating characteristics are the same as those of Panel mount roller plunger type. However, the roller joins the switch body at an angle of 90°.
Flexible leaf lever

AM1101K (Solder terminal) AM1301K (Screw terminal)

Flexible roller leaf lever

AM1103K (Solder terminal) AM1303K (Screw terminal)

$\left.\begin{array}{l|c}\hline \begin{array}{l}\text { Operating force, } \\ \text { max. }\end{array} & \begin{array}{c}1.47 \mathrm{~N} \\ \{150 \mathrm{gf}\}\end{array} \\ \hline \text { Release force, } & 0.14 \mathrm{~N} \\ \text { min. }\end{array}\right\}$

Rigid short roller lever

Rigid roller lever

2. One way types

This type is operated only to one direction, not to the reversed direction by the construction of the roller lever, pivoting away from the cam on the return stroke.
Rigid short roller lever

AM1544K (Solder terminal) AM1744K (Screw terminal)

Operating force, max.	2.23 N $\{227 \mathrm{gf}\}$
Release force, min.	0.42 N $\{43 \mathrm{gf}\}$
Pretravel, max. mm inch	3.5 .138
Movement differential, max. mm inch	0.4 .016
Overtravel, min. mm inch	1.5 .059
Operating position, mm inch	30.2 ± 0.4

 AM1743K (Screw terminal)

3. Reversed action types

When the actuator is operated, the switching mechanism returns to the free position. Extraordinary force by pushing the plunger too much is not put on the switching mechanism, which means stability in life.
Rigid lever

Rigid short roller lever

AM1534K (Solder terminal) AM1734K (Screw terminal)

Operating force,	5.30 N max.
Release force, min.	1.67 N $\{170 \mathrm{gf}\}$
Pretravel, max. mm inch	2.5 .098
Movement differential, max. mm inch	0.4 .016
Overtravel, min. mm inch	2.0 .079
Operating position, mm inch	30.2 ± 0.5 $1.189 \pm .020$

Rigid roller lever

The pushbutton part is sealed with the rubber cap and the connected part between the cap and body is also coated with resin so that these parts are kept off from foreign matters. This type has resistance to oil.
Rigid lever

AM1511K (Solder terminal)
AM1711K (Screw terminal)

Rigid short roller lever

Rigid roller lever

Terminal cover
(for the standard type with soldering terminal)

Terminal cover

(for the standard type with screw terminal)

NOTES

1. Regarding fastening of switch body
1) In fastening the switch body, use M4 mounting screws to attach switches with the torque $1.5 \mathrm{~N} \cdot \mathrm{~m}\{15 \mathrm{~kg} \cdot \mathrm{~cm}\}$ or less.
2) After mounting and wiring, the insulation distance between ground and each terminal should be confirmed as sufficient.
2. Adjustment of the operating device The operating device should be positioned so that it applies no stress to the pushbutton or actuator when the switch is in the open position. If this condition is exceeded, the mechanical and electrical performance will be impaired. In addition, the force applied by the operating device should be in a perpendicular direction. Even if the pushbutton is used in the full total travel position, there will be no influence on the life of the switch.

3. Soldering operations

Soldering should be done in less than 5 seconds, with a 60 watt iron (tip temperature $=350^{\circ} \mathrm{C} 662^{\circ} \mathrm{F}$ max.). Care should be taken not to apply force to the terminal during soldering.
4. Avoid using switches in the following conditions:

- In corrosive gases such as hydrogen sulfide.
- In flammable or explosive gases such as gasoline or thinner etc.
- In a dusty environment.
- In an ambient humidity over 85%.
- In the conditions where the perpendicular operating speed is less than $0.1 \mathrm{~mm} /$ sec . or more than $1,000 \mathrm{~mm} / \mathrm{sec}$.
- In a silicon atmosphere.

5. Others

Caution should be taken not to drop switches.

1. Terminal cover can protect switches from external force and the leakage between terminals can be avoided. Also it can be a simple safety protector because the direct touch of fingers to terminals can be avoided.
2. Nylon 66 is used for higher durability.
3. The height of terminal cover for the solder types is lower than terminal cover for the screw types.
4. AA7000 and AA8000 have 6 knoch-out por tions. Lead wire can be taken out from any desired portion.
