

# Three Channels Power Driver AM1217S

The AM1217S is a three-channel driver for DC motors and it integrates the Motor and Logic supply Pins. The AM1217S provides a high integrated motor-driver solution for Helicopters. The output driver block consists of two open-drain N-MOS; one H-bridge to drive motor winding.

The AM1217S operates on a device power-supply voltage from 3.0 V to 6.5 V. CH\_A can supply up to 0.8A of output continuous current and 2.0 A of output maximum current; CH\_B and CH\_C can supply up to 3.0A of output continuous current and 4.0 A of output maximum current.

The AM1217S has internal shutdown function for Over-temperature protection (TSDp = 150  $^{\circ}$  C ) , Over-temperature protection recover (TSDr = 125  $^{\circ}$  C ) , Power reverse-connect protection to prevent the IC damage in any wrong using ,the CH\_B/CH\_C have the shutdown function for Over-current protection(I $_{OCP}$ = 4.5 A)  $^{\circ}$ 

Its package material is Pb-Free and Halogen-Free (Green) for the purpose of environmental protection and for the sustainable development of the Earth.

## Applications

RC Helicopter

#### Features

- 1) Surface mount package (SOP-16)
- 2) Lower supply current
- 3) Lower VCC standby current
- 4) Lower MOSFETs On-resistance
- 5) Over-temperature protection
- 6) Over-temperature protection recover
- 7) Over-current protection (CH\_B&C)

## Ordering Information

| Orderable Part Number | Package | Marking |
|-----------------------|---------|---------|
| AM1217S               | SOP-16  | AM1217S |



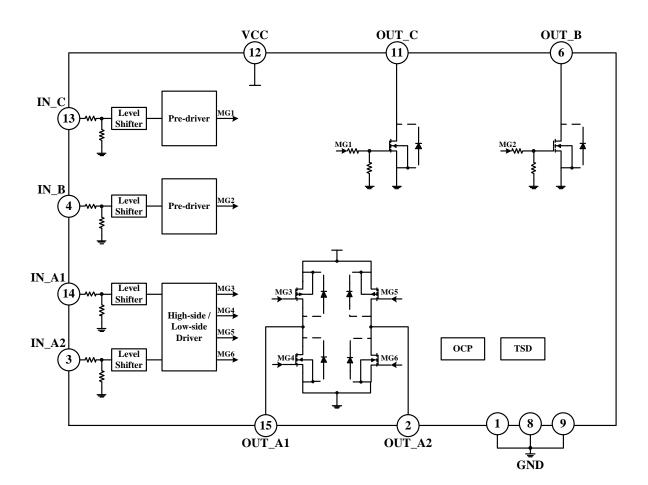
## • Absolute Maximum Ratings $(T_A=25^{\circ}C)$

| Parameter                        | Symbol           | Limits   | Unit         |
|----------------------------------|------------------|----------|--------------|
| Supply voltage                   | VCC              | 7.0      | V            |
| CH_A Output continuous current   | locont           | 0.8      | А            |
| CH_A Output maximum current      | Iomax            | 2.0      | А            |
| CH_B/C Output continuous current | locont           | 3.0      | А            |
| CH_B/C Output maximum current    | Iomax            | 4.0      | А            |
| Operate temperature range        | T <sub>opr</sub> | -40∼+125 | $^{\circ}$ C |
| Storage temperature range        | T <sub>stg</sub> | -40∼+150 | °C           |

## • Recommended operating conditions (TA = $25^{\circ}$ C)

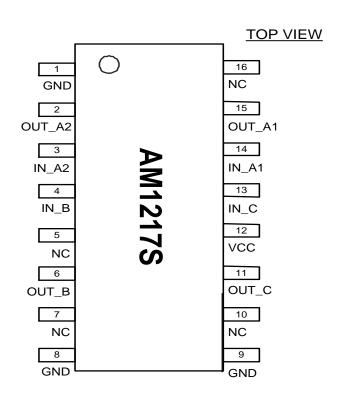
(Set the power supply voltage taking allowable dissipation into considering)

| Parameter                        | Symbol           | Min  | Тур | Max     | Unit |
|----------------------------------|------------------|------|-----|---------|------|
| Operating supply voltage range   | VCC              | 3.0  |     | 6.5     | ٧    |
| Input signal voltage             | V <sub>IN</sub>  | -0.3 |     | Vcc+0.3 | V    |
| CH_A output current              | I <sub>OUT</sub> | 0    |     | 0.8     | Α    |
| CH_B/C output current            | I <sub>OUT</sub> | 0    |     | 3.0     | Α    |
| Externally applied PWM frequency | f <sub>PWM</sub> | 0.02 |     | 65      | KHz  |




# • Electrical Characteristics (Unless otherwise specified, $Ta = 25^{\circ}C$ , $V_{CC}=5V$ )

| Doromotor                   | Parameter Symbol Limit |      |      | Unit            | Conditions |                                                        |
|-----------------------------|------------------------|------|------|-----------------|------------|--------------------------------------------------------|
| Parameter                   | Symbol                 | Min  | Тур  | Max             | Unit       | Conditions                                             |
| Supply current              | I <sub>cc</sub>        |      | 25   |                 | uA         | Input signal IN_AX=H, IN_/B/C= L, No load on OUT_A/B/C |
| Standby current             | I <sub>STB</sub>       |      | 5    | 10              | uA         | Input signal IN_AX/B/C=L,<br>No load on OUT_A/B/C      |
| PWM input                   |                        |      |      |                 |            |                                                        |
| Input H level voltage       | $V_{PWMH}$             | 2.5  |      | V <sub>cc</sub> | V          |                                                        |
| Input L level voltage       | $V_{PWML}$             | 0    |      | 0.7             | V          |                                                        |
| Input H level current       | I <sub>PWMH</sub>      |      | 30   |                 | μΑ         | $V_{CC} = 5 \text{ V}$ , $V_{IN} = 3 \text{ V}$        |
| Input frequency             | $F_PWM$                | 0.02 |      | 65              | KHz        |                                                        |
| Input pulldown resistance   | $R_{IPD}$              |      | 100  |                 | ΚΩ         |                                                        |
| Output                      |                        |      |      |                 |            |                                                        |
| On-resistance of CH_A       | $R_{ds(on)}$           |      | 0.72 |                 | Ω          | I <sub>Load</sub> = 200mA<br>Upper and Lower total     |
| On-resistance of CH_B       | $R_{ds(on)}$           |      | 0.12 |                 | Ω          | I <sub>Load</sub> = 600mA, Lower total                 |
| On-resistance of CH_C       | $R_{ds(on)}$           |      | 0.12 |                 | Ω          | I <sub>Load</sub> = 600mA, Lower total                 |
| Output Protection           |                        |      |      |                 |            |                                                        |
| Thermal shutdown protection | TSD <sub>p</sub>       |      | 150  | _               | °C         |                                                        |
| Thermal shutdown release    | TSD <sub>r</sub>       |      | 125  |                 | °C         |                                                        |

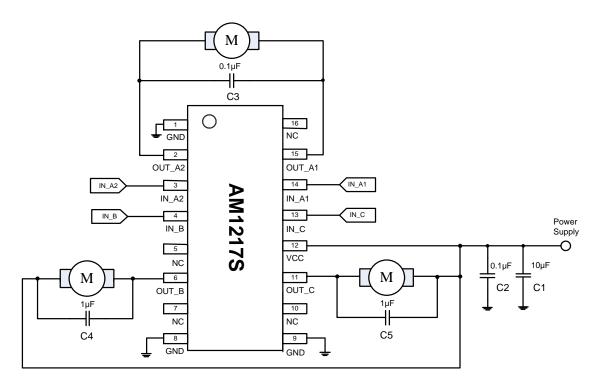



## Block Diagram





## Pin configuration




## Pin Description

| PIN No | Pin Name | I/O | Description                      |  |
|--------|----------|-----|----------------------------------|--|
| 1      | GND      | -   | Ground                           |  |
| 2      | OUT_A2   | О   | Output negative terminal of CH_A |  |
| 3      | IN_A2    | I   | Input reverse signal for CH_A    |  |
| 4      | IN_B     | I   | Input of CH_B                    |  |
| 5      | NC       | -   | No connector                     |  |
| 6      | OUT_B    | О   | Output negative terminal of CH_B |  |
| 7      | NC       | -   | No connector                     |  |
| 8      | GND      | -   | Ground                           |  |
| 9      | GND      | -   | Ground                           |  |
| 10     | NC       | -   | No connector                     |  |
| 11     | OUT_C    | О   | Output positive terminal of CH_C |  |
| 12     | VCC      | -   | Power input                      |  |
| 13     | IN_C     | I   | Input of CH_C                    |  |
| 14     | IN_A1    | I   | Input forward signal for CH_A    |  |
| 15     | OUT_A1   | О   | Output positive terminal of CH_A |  |
| 16     | NC       | -   | No connector                     |  |



## Application



#### Circuit Descriptions

The functional description of capacitors on the application circuits:

- I. C1, C2: V<sub>CC</sub> input capacitor:
  - 1) The capacitor can reduce the power spike from the motor, to avoid the IC being directly damaged by the peak voltage. It also can stabilize the Vcc voltage and decay its ripples.
  - 2) The capacitor can offer motor the compensated power in motor start running.
  - 3) The capacitor value depends on the value of the VCC and motor loading. In general, a  $10\mu F$  capacitor is enough in low voltage power (VCC). If the large voltage power or a heavy loading motor is used, a larger capacitor should be chosen.
  - 4) On the PCB configuration, the C1&C2 must be mounted as close as possible to VCC (PIN12).

#### II. C3, C4, C5: The across-motor capacitor:

- 1) The C3 capacitors can reduce the power spike of motor in start running. A 0.1µF capacitor is recommended.
- 2) The C4&C5 capacitors can reduce the power spike of motor in start running. A 1µF capacitor is recommended



## • Input Logic Description

## Function truth table of CH\_A

| IN_A1 | IN_A2 | OUT_A1 | OUT_A2 | Mode        |
|-------|-------|--------|--------|-------------|
| L     | L     | L      | L      | Stop/ Brake |
| L     | Н     | L      | Н      | Reverse     |
| Н     | L     | Н      | L      | Forward     |
| Н     | Н     | L      | L      | Stop        |

## Function truth table of CH\_B/CH\_C

| IN_B/IN_C | OUT_B/OUT_C | Mode   |
|-----------|-------------|--------|
| L         | Н           | Open   |
| Н         | L           | Active |

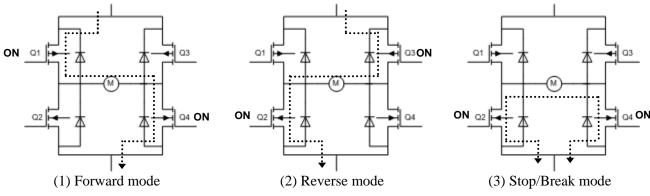
**<sup>\*\*</sup>Low standby current function when IN\_A1 = IN\_A2 = IN\_B = IN\_C = Low level** 



## Operating Mode Descriptions

1) H-Bridge basic operation mode

a) Forward mode


Definition: When IN\_A1=H, IN\_A2=L, then OUT\_A1=H, OUT\_A2=L

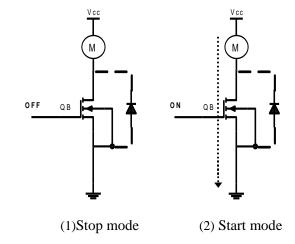
b) Reverse mode

Definition: When IN\_A1=L, IN\_A2=H, then OUT\_A1=L, OUT\_A2=H

c) Stop/Break mode

Definition: When IN\_A1=IN\_A2=L or H, then OUT\_A1=OUT\_A2=L




2) CH\_B/C basic operation mode

a) Stop mode

Definition: When  $IN_B/C = L$ , then  $OUT_B/C = H$ 

b) Start mode

Definition : When  $IN_B/C = H$ , then  $OUT_B/C = L$ 

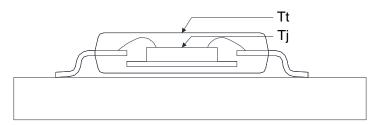


## Protection Descriptions

1) Over-temperature protection

If the IC junction temperature exceeds  $150^{\circ}$  C (Typ), the internal over-temperature protection circuits will be triggered and all the FETs in H-bridge are disabled to ensure the safety of customers' products. If it falls to  $125^{\circ}$  C(Typ), the IC resumes automatically.

2) Over-current protection (OCP)


While the CH\_B/C passes through a large current, 4.5A (Typ), the internal OCP circuits will be triggered and entry a protection mode of auto-recover to avoid damage in IC and EE system of device.



#### Thermal Information

| θja | junction-to-ambient thermal resistance     | 87.41°C/W |
|-----|--------------------------------------------|-----------|
| Ψjt | junction-to-top characterization parameter | 4.15°C/W  |

- ➤ Oja is obtained in a simulation on a JEDEC-standard 1s0p board as specified inJESD-51.
- The **Oja** number listed above gives an estimate of how much temperature rise is expected if the device was mounted on a standard JEDEC board.
- When mounted on the actual PCB, the **Θja** value of JEDEC board is totally different than the **Θja** value of actual PCB.
- > Ψjt is extracted from the simulation data to obtain Θja using a procedure described in JESD-51, which estimates the junction temperature of a device in an actual PCB.
- > The thermal characterization parameter, Ψjt, is proportional to the temperature difference between the top of the package and the junction temperature. Hence, it is useful value for an engineer verifying device temperature in an actual PCB environment as described in JEDEC JESD-51-12.
- When Greek letters are not available, Ψjt is written Psi-jt.
- > Definition:



DEFINITIONS:  $\psi_{it} = (T_i - T_t)/P_d$ 

Where:

Ψjt (Psi-jt) = Junction-to-Top(of the package) °C/W

**Tj**= Die Junction Temp. °C

Tt= Top of package Temp at center. °C

**Pd**= Power dissipation. Watts

# AM1217S Motor Driver ICs

- Practically, most of the device heat goes into the PCB, there is a very low heat flow through top of the package, So the temperature difference between **Tj** and **Tt** shall be small, that is any error caused by PCB variation is small.
- This constant represents that Ψjt is completely PCB independent and could be used to predict the Tj in the environment of the actual PCB if Tt is measured properly.

#### How to predict Tj in the environment of the actual PCB

Step 1 : Used the simulated  $\Psi jt$  value listed above.

Step 2 : Measure **Tt** value by using

#### Thermocouple Method

We recommend use of a small ~40 gauge(3.15mil diameter) thermocouple. The bead and thermocouples wires should touch the top of the package and be covered with a minimal amount of thermally conductive epoxy. The wires should be heat-insulated to prevent cooling of the bead due to heat loss into wires. This is important towards preventing "too cool" **Tt** measurements, which would lead to the calculated **Tj** also being too cool.

#### > IR Spot Method

An IR Spot method should be utilized only when using a tool with a small enough spot area to acquire the true top center "hot spot".

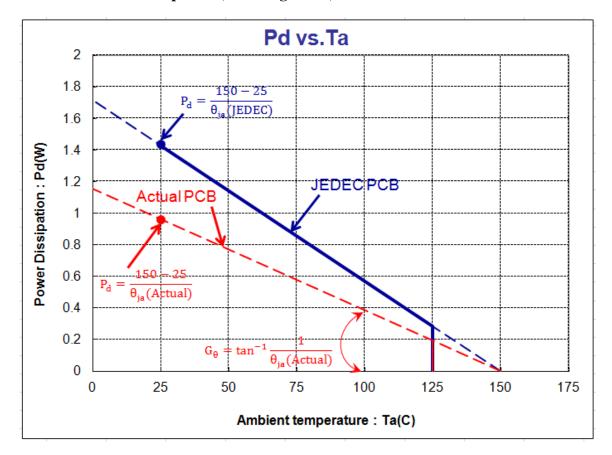
Many so-called "small spot size" tools still have a measurement area of  $0\sim100+$ mils at "zero" distance of the tool from the surface. This spot area is too big for many smaller packages and likely would result in cooler readings than the small thermocouple method.

Consequently, to match between spot area and package surface size is important while measuring **Tt** with IR sport method.

Step 3 : calculating power dissipation by

$$P \cong (VCC-|Vo_{Hi}-Vo_{Lo}|) \times I_{out} + VCC \times Icc$$

Step 4: Estimate **Tj** value by


$$Tj = \Psi jt \times P + Tt$$

Step 5: Calculated Θja value of actual PCB by the known **Tj** 

$$\Theta$$
ja(actual) = (Tj-Ta)/P

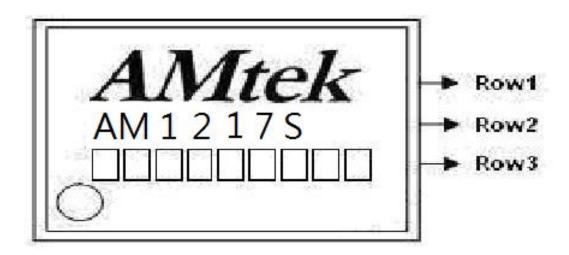


■ Maximum Power Dissipation (de-rating curve) under JEDEC PCB & actual PCB



Unit: mm



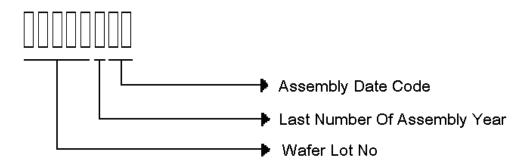

# Packaging outline --- SOP16



| CVMDOI | MILLIM    | <b>IETERS</b> | INCHES |       |  |
|--------|-----------|---------------|--------|-------|--|
| SYMBOL | Min.      | Max.          | Min.   | Max.  |  |
| A      |           | 1.75          |        | 0.069 |  |
| A1     | 0.05      | 0.225         | 0.002  | 0.009 |  |
| A2     | 1.30      | 1.50          | 0.051  | 0.059 |  |
| A3     | 0.60      | 0.70          | 0.024  | 0.028 |  |
| b      | 0.39      | 0.48          | 0.015  | 0.019 |  |
| С      | 0.21      | 0.26          | 0.008  | 0.010 |  |
| D      | 9.70      | 10.10         | 0.382  | 0.398 |  |
| Е      | 5.80      | 6.20          | 0.228  | 0.244 |  |
| E1     | 3.70      | 4.10          | 0.146  | 0.161 |  |
| e      | 1.27 TYP. |               | 0.05   | TYP.  |  |
| h      | 0.25      | 0.50          | 0.010  | 0.020 |  |
| L      | 0.50      | 0.80          | 0.020  | 0.031 |  |
| L1     | 1.05      | TYP           | 0.041  | TYP.  |  |



## Marking Identification




**NOTE:** 

Row1 : Logo

Row2 : Device

Row3 : Wafer Lot No · Assembly Year · Assembly Date Code



Example : Wafer Lot No is CH + last number of assembly year is 2(C=2) + produce at the week 51

Then mark "88888C51"

Assembly Year Code:

(Year\_A=0,B=1,C=2,D=3,E=4,F=5,G=6,H=7,I=8,J=9, e.g.: 201<u>2</u>=C)