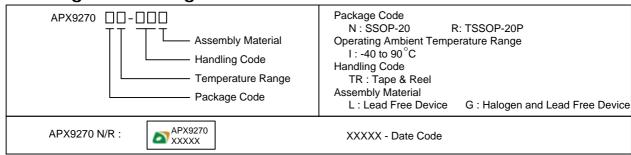


Direct PWM Variable Speed Fan Motor Driver

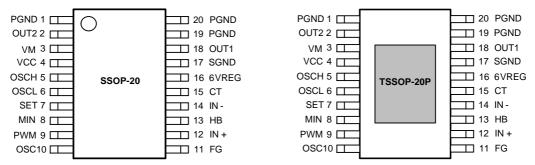
Features

- · Single Phase Full Wave Fan Driver
- Low Quiescent Current (6mA Typical)
- Built-in Variable Speed Function
- Current Limit Circuit (includes both internal and external Current Limit)
- Built-in Lock Protection and Auto Restart Function
- FG (rotation speed detection) Output
- Soft Switching Circuit (before phase change, enabling low-consumption, low loss and low noise drive.)
- Over Voltage Protection (16.5V Typical)
- · Built-in Kickback Absorption Circuit
- · Built-in Thermal Protection Circuit
- Lead Free and Green Devices Available (RoHS Compliant)


General Description

The APX9270 is a single phase, DC brushless motor driver with PWM variable speed control and current limit features suitable for the fan of personal computer's power supply and CPU cooler. The PWM control system includes thermistor input signal and direct PWM input signal, enabling highly silent and low vibration speed control. The device is equipped with a built-in lock protection, which protects the fan when it is locked. It also has rotation speed detection output and thermal protection function. The APX9270 is available in SSOP-20 and TSSOP-20P packages (see Pin Configurations).

Applications


- CPU Coolers
- Variable Speed Control Fans

Ordering and Marking Information

Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

Pin Configurations

ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

Absolute Maximum Ratings

Symbol	Parameter	Ratings	Unit
V _{CC}	VCC Pin Supply Voltage (VCC to SGND)	-0.3 to 18	V
V _M	VM Pin Supply Voltage (VM to SGND)	-0.3 to V _{CC}	V
I _{OUT}	OUT1/OUT2 Pin Maximum Output Current	1.2	Α
V _{OUT1} /V _{OUT2}	OUT1/OUT2 Pin Output Voltage (OUT1, OUT2 to SGND)	V_{PGND} -0.3 to V_{M}	V
V_{PGND}	PGND to SGND Voltage	-0.3 to 0.3	V
I _{HB}	HB Pin Output Current	0 to 15	mA
V _{SET}	SET Pin Input Voltage (SET to SGND)	-0.3 to 7	V
V _{MIN}	MIN Pin Input Voltage (MIN to SGND)	-0.3 to 7	V
V_{PWM}	PWM Pin Input Voltage (PWM to SGND)	-0.3 to V _{CC}	V
V_{FG}	FG Pin Output Voltage (FG to SGND)	-0.3 to V _{CC}	V
I _{FG}	FG Pin Output Current	0 to 10	mA
V _{osc}	OSC Pin Input Voltage (OSC to SGND)	-0.3 to 7	V
V _{CT}	CT Pin Input Voltage (CT to SGND)	-0.3 to 7	V
	Power Dissipation		
P _D	SSOP-20	1.2	W
	TSSOP-20P	1.5	
TJ	Maximum Junction Temperature	150	°C
T _{STG}	Storage Temperature Range	-55 to 150	°C
T_{SDR}	Maximum Lead Soldering Temperature, 10 Seconds	260	°C

Note 1: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device.

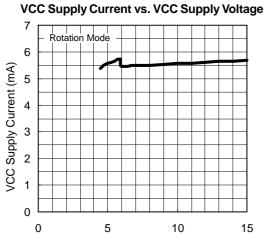
Thermal Characteristics

Symbol	Parameter	Value	Unit
	Thermal Resistance-Junction to Ambient		
$R_{TH,JA}$	SSOP-20	104	C/W
	TSSOP-20P	83	

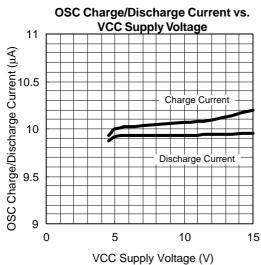
Note 2: Mounted on a board (60x38x1.6t mm, Glass epoxy).

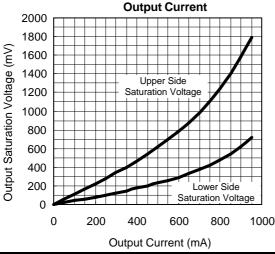
Recommended Operating Conditions

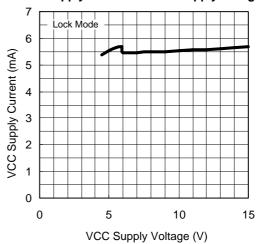
Symbol	Parameter	Rating	Unit
Vcc	VCC Pin Supply Voltage	4.5 to 15	V
V_{M}	VM Pin Supply Voltage	3.5 to 15	V
V _{SET}	SET Pin Input Voltage Range	0 to 6	V
V_{MIN}	MIN Pin Input Voltage Range	0 to 6	V
V_{PWM}	PWM Pin Input Voltage Range	0 to V _{CC}	V
V _{OSCH} /V _{OSCL}	OSC High/Low Level Input Voltage Range	0 to 6	V
V _{ICM}	Hall Input Common Phase Input Voltage Range	0.2 to 3	V
T _A	Ambient Temperature	-40 to 90	°C

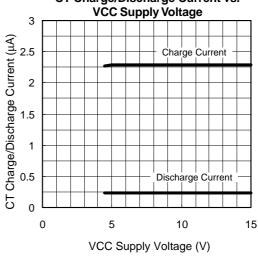


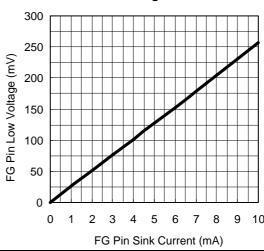
Electrical Characteristics $(V_{CC} = 12V, T_A = 25^{\circ}C, R_L = 0\Omega, unless otherwise specified)$


Symbol	Parameter	Test Conditions		11!4		
Symbol	Parameter	lest Conditions	Min.	Тур.	Max.	Unit
SUPPLY CUR	RENT		•		•	
V _{6VREG}	6VREG Pin Output Voltage	$I_{6VREG} = 5mA$	5.85	6	6.15	V
V_{HB}	HB Pin Output Voltage	$I_{HB} = 5mA$	1.2	1.3	1.4	V
I _{CC1}	Operating Current	Rotation Mode	-	6	8	mA
I _{CC2}	Operating Current	Lock Protection Mode	-	6	8	mA
OSCILLATOR						
I _{OSC1}	OSC Charge Current		7.5	10	12.5	μΑ
I _{OSC2}	OSC Discharge Current		7.5	10	12.5	μΑ
LOCK PROTE	CTION		•	•	•	
V_{CTH}	CT Pin High Level Voltage	$C_{CT} = 1\mu F$	3.4	3.6	3.8	V
V _{CTL}	CT Pin Low Level Voltage	$C_{CT} = 1\mu F$	1.4	1.6	1.8	V
I _{CT1}	CT Charge Current	V _{CT} = 0V	1.65	2.2	2.75	μΑ
I _{CT2}	CT Discharge Current	V _{CT} = 3.6V	0.165	0.22	0.275	μΑ
R _{CT}	CT Charge/Discharge Current Ratio	$R_{CT} = I_{CT1}/I_{CT2}$	8	10	12	-
OUTPUT DRI	VERS	!		!		
V _{OL}	Output Lower Side Saturation	I _{OUT} = 400mA	-	0.2	0.3	V
V _{OH}	Output Upper Side Saturation	I _{OUT} = 400mA	-	0.4	0.6	V
V_{FG}	FG Pin Low Voltage	$I_{FG} = 5mA$	-	0.2	0.4	V
I _{FGL}	FG Pin Leak Current	$V_{FG} = 7V$	-	0.1	1	μΑ
HALL SENSIT	TIVITY		•	•	•	
V_{HN}	Hall Input Sensitivity	Zero to peak including offset and hysteresis	-	25	35	mV
CURRENT-LII	MIT				,	
I _{LIM}	Internal Current-Limit		-	1200	-	mA
I _{RL}	External Current-Limit	$R_L = 0.5\Omega$	-	960	-	mA
THERMAL PR	ROTECTION					
	Thermal Protection Temperature		-	160	-	۰,۲
	Thermal Protection Hysteresis		-	20	-	°C
Over-Voltage	Protection					
V _{ov}	Over-Voltage Threshold		-	16.5	-	V

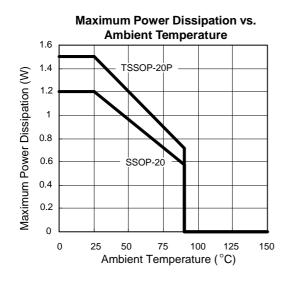

Typical Operating Characteristics


VCC Supply Voltage (V)

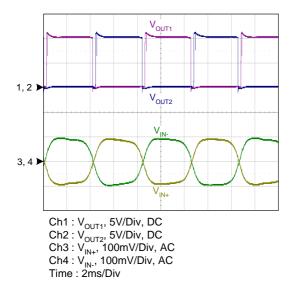

Output Saturation Voltage vs.


VCC Supply Current vs. VCC Supply Voltage

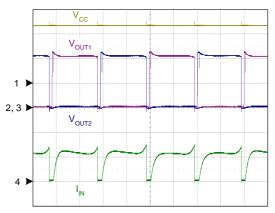
CT Charge/Discharge Current vs.



FG Pin Low Voltage vs. Sink Current



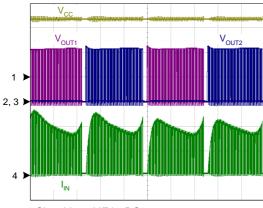
Typical Operating Characteristics



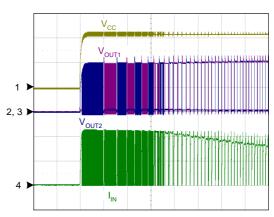
Operating Waveforms

Rotation Waveform 1

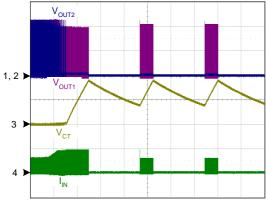
Rotation Waveform 2



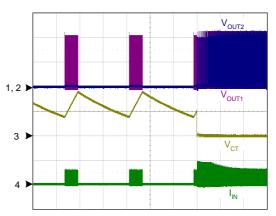
Ch1: V_{CC}, 5V/Div, DC Ch2: V_{OUT1}, 5V/Div, DC Ch3: V_{OUT2}, 5V/Div, DC Ch4: I_{IN}, 500mA/Div, DC Time: 2ms/Div


Operating Waveforms (Cont.)

Rotation Waveform 3


 $\begin{array}{l} {\rm Ch1:V_{CC},5V/Div,DC} \\ {\rm Ch2:V_{OUT1},5V/Div,DC} \\ {\rm Ch3:V_{OUT2},5V/Div,DC} \\ {\rm Ch4:I_{_{\rm IN}},200mA/Div,DC} \\ {\rm Time:2ms/Div} \end{array}$

Power ON Waveform

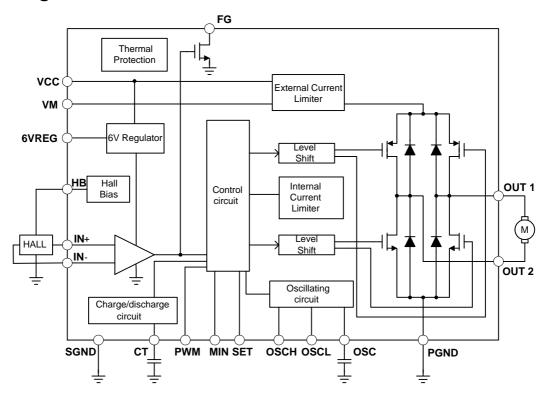

 $\begin{array}{l} {\rm Ch1:V_{CC},5V/Div,DC} \\ {\rm Ch2:V_{OUT1},5V/Div,DC} \\ {\rm Ch3:V_{OUT2},5V/Div,DC} \\ {\rm Ch4:I_{JN},500mA/Div,DC} \\ {\rm Time:50ms/Div} \end{array}$

Lock Protection Waveform 1

Ch1: V_{OUT1}, 5V/Div, DC Ch2: V_{OUT2}, 5V/Div, DC Ch3: V_{CT}, 2V/Div, DC Ch4: I_{IN}, 1A/Div, DC Time: 1s/Div

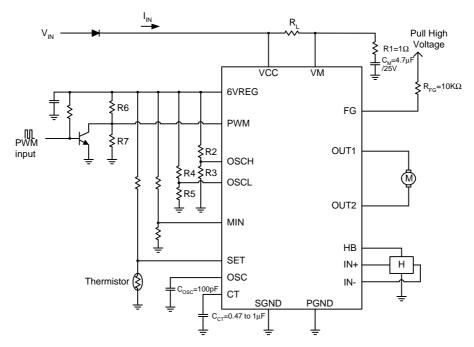
Lock Protection Waveform 2

Ch1: V_{OUT1}, 5V/Div, DC Ch2: V_{OUT2}, 5V/Div, DC Ch3: V_{CT}, 2V/Div, DC Ch4: I_{IN}, 1A/Div, DC Time: 1s/Div



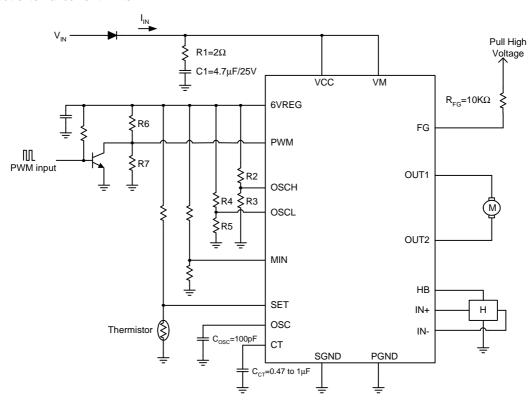
Pin Description

PIN		FUNCTION
NO.	NAME	FUNCTION
1	PGND	Power Stage GND.
2	OUT2	H-bridge Output Connection. The output stage is a H-bridge formed by four transistors and four-protection diode for switching applications.
3	VM	Supply Voltage for Output Stage Input Pin.
4	VCC	Supply Voltage Input Pin.
5	OSCH	Setting of the OSC Waveform High Level Voltage. Use a voltage divider from 6VREG to set OSC waveform high-level voltage.
6	OSCL	Setting of the OSC Waveform Low Level Voltage. Use a voltage divider from 6VREG to set OSC waveform low-level voltage.
7	SET	Speed Setting. An external voltage into SET pin to set fan speed.
8	MIN	Minimum Speed Setting. Use a voltage divider from 6VREG to set MIN pin voltage for setting minimum speed.
9	PWM	PWM Signal Input Terminal.
10	OSC	Oscillator Frequency Setting. Connect a capacitor to SGND to set oscillation frequency.
11	FG	Rotation Speed Output. This is an open-collector output.
12	IN+	Hall Input +. Connect to hell element positive output.
13	НВ	Hall Bias. This is a 1.3V constant-voltage output for hall element bias.
14	IN-	Hall Input Connect to hell element negative output.
15	СТ	Shutdown Time and Restart Time Setting. Connect a capacitor to SGND to set shutdown time and restart time in lock mode.
16	6VREG	6V Regulator Output. This is a 6V constant-voltage output for application circuit biases.
17	SGND	Control Stage GND.
18	OUT1	H-bridge Output Connection. The output stage is a H-bridge formed by four transistors and four-protection diode for switching applications.
19	PGND	Power Stage GND.
20	PGND	Power Stage GND.



Block Diagram

Typical Application Circuits


1. With external current limiter

Typical Application Circuits (Cont.)

2. Without external current limiter

Note 3: In hot plug application, it's necessary to protect against a hot plug input voltage overshoot. Placing a resistor (R1) in series with a capacitor (C1 or C_{M}) dampens the overshoot.

Function Description

Variable Speed Control

The APX9270 is designed with a variable speed controller which has two external input signals, a temperature signal sensed by a thermistor and an external PWM signal.

Temperature Speed Control

Using thermistor get temperature to make SET pin voltage. The fan's speed is decided by comparing OSC and SET pin voltage. In addition, the lowest drive duty is set by comparing the OSC oscillating voltage and MIN pin voltage (only for temperature speed control side). Temperature control system works by comparing the voltage of SET and OSC. When SET voltage is lower than OSC voltage, one OUT pulled high and another OUT pulled low. On the contrary, when SET voltage is higher than OSC voltage, upper side transistors are OFF; meanwhile, the coil current re-circulates lower side transistor. Therefore, with decreasing SET voltage, the output ON-Duty will be increasing, which results in the increasing of the coil current and motor rotation speed.

External PWM Speed Control

This is a pin for the direct PWM speed control. PWM pin input is pulled down to GND when it is not used. The minimum duty is performed by R6 and R7 resistances (see Typical Application Circuit). R7 is left open if you want to stop rotation when PWM duty is 0%.

(see Figure 1: Rotation Control Curve)

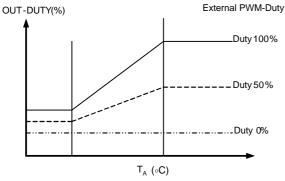


Figure 1: Rotation Control Curve

Lockup Protection and Automatic Restart

The APX9270 provides the lockup protection and automatic restart functions to prevent the coil burnout while

the fan is locked. Connecting the capacitor from CT pin to GND determines the shutdown time and restart time. As the fan is locked, the charge/discharge circuit will charge the CT capacitor to 3.6V by a 2.2µA source current for a locked detection time, and then the circuit will switch the capacitor to discharge. During the discharging interval, the output drivers are switched off until the CT voltage is discharged to 1.6V by a 0.22µA sink current, and the circuit will switch the capacitor to charge. In the charging interval, the IC enters the restart time; one output is high and another is low, which makes a torque for fan rotation until the CT voltage is charged to 3.6V by a 2.2µA source current. If the locked condition still remains, the charge/ discharge process will be recurred until the locked condition is released (see Figure 2: Lock/Auto Restart Waveform).

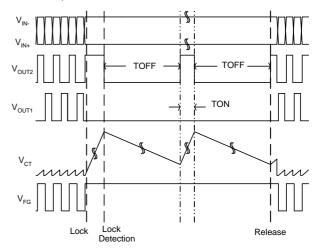


Figure 2: Lock/Auto Restart Waveform

Current Limit

The APX9270 includes both internal and external current limiters. External current limiter value is programmed by $R_{\rm L}$ which is located between VCC pin and VM pin. The external current limiter works when the voltage difference between both sides of $R_{\rm L}$ raises to be 0.48V or higher. For example, the $R_{\rm L}$ =0.5 Ω , the external current limiter value is fixed and internally set at 960mA. The internal current limiter value is different in rotation mode and lock mode. It is 1.2A in rotation mode, but it decreases to 0.6A in lock mode. This feature can reduce power consumption while the fan is locked. In general application, it is

Function Description (Cont.)

Current Limit (Cont.)

recommended to short R₁ resistance and remove C_M capacitor to disable external current limiter because the internal current limiter is sufficient to avoid overload.

FG Output

The FG pin is an open drain output connecting a pull up resistor to a high level voltage for the speed detection function. When $V_{\text{IN-}}$ is larger than $V_{\text{IN+}}$, the V_{FG} is low (switch on); when V_{IN-} is smaller than V_{IN+} , the V_{FG} is high (switch off). Leave it open when not in using.

Thermal Protection

The APX9270 is designed with a thermal protection to protect the IC from the damage of over temperature. When internal junction temperature reaches 160°C, the output devices will be switched off. When the IC's junction temperature cools by 20°C, the thermal sensor will turn the output devices on again resulting in a pulsed output during continuous thermal overload.

Truth Table

		Input				Outp	ut	
SET	PWM	IN-	IN+	CT	OUT1	OUT2	FG	Mode
	L	Ι	L		Η	Ш	L	Rotation (Drive)
	L	L	Н		L	Н	OFF	Rotation (Drive)
Н	L	Н	L		OFF	L	L	Potation (Pogeneration)
	L	L	Н	L	L	OFF	OFF	Rotation (Regeneration)
-	Н	Н	L		OFF	L	L	Output Regeneration Mode by External
-	Н	L	Н		L	OFF	OFF	Signal
-	-	Н	L	ш	OFF	L	L	Lock Mode
-	-	L	Н	Н	L	OFF	OFF	Lock Mode

SET or PWM=[L], "L" means that SET or PWM voltage is smaller than OSC voltage. Also, SET or PWM=[H], "H" means that SET or PWM voltage is greater than OSC voltage.

Application Information

Input Protection Diode & Capacitor

The input protection diode (D1) between supply voltage and VCC pin has to be used to prevent the reverse current flowing into the supply power. However, the protection diode will cause a voltage drop on the supply voltage. The current rating of the diode must be larger than the maximum output current. For the noise reduction purpose, a capacitor (C1/C_M) must be connected between VCC/VM and SGND/PGND. The $C1/C_{\scriptscriptstyle M}$ should be placed near the device VCC/VM pin as close as possible.

Setting of the Oscillator Frequency and Output Voltage

The oscillator is used for PWM speed control. Compare the OSC and SET pin voltages can decide PWM duty and PWM frequency depends on the oscillator frequency. The oscillator is based on internal charge/discharge circuit. The circuit charges C_{OSC} to V_{OSCH} by a 10 μA source current, and then it will discharge C_{OSC} to V_{OSCL} by $10\mu A$ sink current. The circuit can generate a triangular waveform. The triangular waveform is determinded by C_{osc}, R2, R3, R4, and R4. (see Typical Application Circuit)

$$V_{OSCI} = V_{6VREG} \times \frac{R3}{R2 + R3}$$

$$V_{OSCI} = V_{6VREG} \times \frac{R5}{R5}$$

$$Voscl = V_{6}VREG \times \frac{R5}{R4 + R5}$$

$$fosc = \frac{0.5 \times Isoc1}{(VoscH-VoscL) \times Cosc}$$

For example:

$$C_{OSC} = 100 pF$$
, $R2 = R5 = 10 k\Omega$, $R3 = R4 = 20 k\Omega$, $I_{OSC} = 10 \mu A$

$$V_{OSCH} = 4V, V_{OSCL} = 2V, f_{OSC} = 25kHz$$

The recommended OSC frequency range is from 22kHz to 32kHz.

Application Information (Cont.)

HB Bias Output and Hall Input Signals

The IC outputs a 1.3V voltage on HB pin to provide bias for the external hall element. The IC also has two pins IN+ and IN- to receive the hall signals from the hall element. The hall signals are very weak so the layout tracks must be short and far away from those noise sources to avoid noise coupling. The hall input amplifier has 20mV hysteresis. Therefore, the recommended differential hall input voltage should be more than 60mV.

CT Capacitor

The capacitor that is connected from CT pin to GND determines the shutdown time and restart time.

$$Locked \, Detection \, Time = \frac{C_{CT} \times \left(V_{CT1} - 0.2V\right)}{I_{CT1}}$$

$$Restart \, Time = \frac{C_{CT} \times \left(V_{CT1} - V_{CT2}\right)}{I_{CT1}}$$

Shutdown Time =
$$\frac{C_{\text{CT}} \times \left(V_{\text{CT1}} - V_{\text{CT2}}\right)}{I_{\text{CT2}}}$$

where

 $C_{CT} = CT$ pin capacitor

For example:

$$V_{CC} = 12V, C_{CT} = 1\mu F$$

Locked Detection Time = 1.545 s

Restart Time = 0.909 s

Shutdown Time = 9.091 s

The value of charge capacitor in the range of $0.47\mu F$ to $1\mu F$ is recommended.

FG Resistor

The value of the FG resistor could be decided by the following equation

$$R_{FG} = \frac{V_{6VREG} - V_{FG}}{I_{FG}}$$

For example:

$$V_{\text{6VREG}} = 6V, I_{\text{FG}} = 5\text{mA}, V_{\text{FG}} = 0.2V, R_{\text{FG}} = 1.16\text{k}\Omega$$

The value of resistor in the range of $1k\Omega$ to $10k\Omega$ is recommended.

Thermal Pad Consideration

The thermal pad on the bottom of the TSSOP-20P package should be soldered down to a copper pad on the circuit board. Heat can be conducted away from the thermal pad through the copper plane to ambient. If the copper plane is not on the top surface of the circuit board, 8 to 10 vias of 13 mil or smaller in diameter should be used to thermally couple the thermal pad to the bottom plane. For good thermal conduction, the vias must be plated through and solder filled. The copper plane is used to conduct heat away from the thermal pad should be as large as practical.

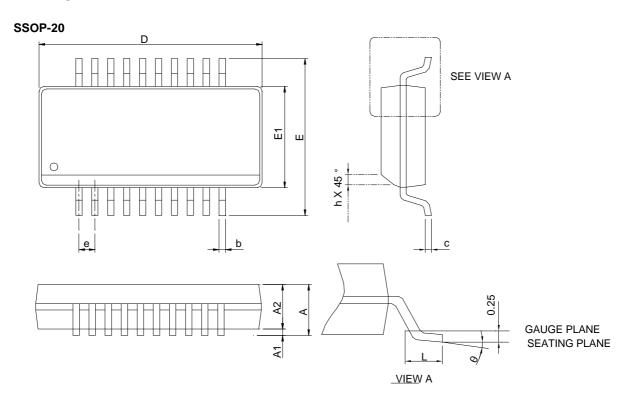
If the ambient temperature is higher than 25°C, a larger copper plane or forced-air cooling will be required to keep the APX9270 junction temperature below the thermal protection temperature (160°C).

Thermal Consideration

Refer to "Maximum Power Dissipation vs. Ambient Temperature", the IC is safe to operate below the curve and it will cause the thermal protection if the operating area is above the line. For example, $T_A = 50^{\circ}\text{C}$, the SSOP-20 package maximum power dissipation is about 0.95W.

Power dissipation can be calculated by the following equation:

$$\mathbf{P}_{\!D} = \! \left(\mathbf{V}_{\!CC} \! - \! \left| \mathbf{V}_{\!OUT1} \! - \! \mathbf{V}_{\!OUT2} \right| \right) \! \! \times \! \mathbf{I}_{\!OUT} + \mathbf{V}_{\!CC} \! \times \! \mathbf{I}_{\!CC}$$

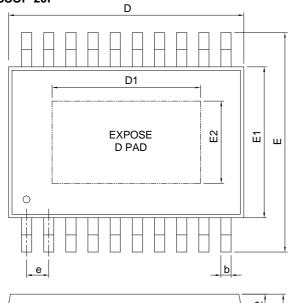

For example:

When V_{CC} = 12V, I_{CC} = 6mA, I_{OUT} = 300mA, V_{OUT1} = 11.66V, V_{OUT2} = 0.13V, then P_D = 0.213W

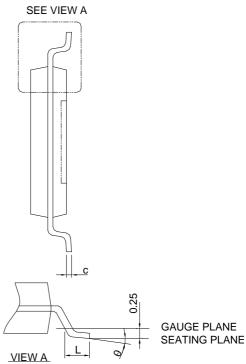
According the power dissipation issue, we could adapt this SSOP-20 package.

Package Information

S	SSOP-20					
SYMBO	MILLIM	MILLIMETERS		HES		
P	MIN.	MAX.	MIN.	MAX.		
Α		1.75		0.069		
A1	0.10	0.25	0.004	0.010		
A2	1.24		0.049			
b	0.20	0.30	0.008	0.012		
С	0.15	0.25	0.006	0.010		
D	8.56	8.76	0.337	0.345		
Е	5.80	6.20	0.228	0.244		
E1	3.80	4.00	0.150	0.157		
е	0.63	5 BSC	0.025	5 BSC		
L	0.40	1.27	0.016	0.050		
h	0.25	0.50	0.010	0.020		
θ	0°	8°	0°	8°		

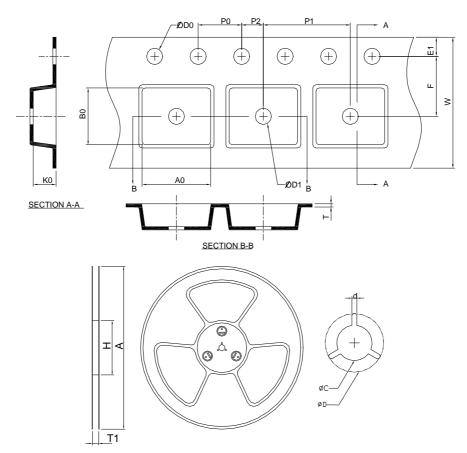

Note: 1. Follow JEDEC MO-137 AD.


- 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side .
- Dimension "E" does not include inter-lead flash or protrusions.
 Inter-lead flash and protrusions shall not exceed 10 mil per side.



Package Information

TSSOP-20P


ş		TS	SOP-20P	
SYMBOL	MILLIM	ETERS	INC	HES
6	MIN.	MAX.	MIN.	MAX.
А		1.20		0.047
A1	0.05	0.15	0.002	0.006
A2	0.80	1.05	0.031	0.041
b	0.19	0.30	0.007	0.012
С	0.09	0.20	0.004	0.008
D	6.40	6.60	0.252	0.260
D1	2.20	5.00	0.087	0.197
Е	6.40	BSC	0.25	2 BSC
E1	4.30	4.50	0.169	0.177
E2	1.50	4.00	0.059	0.157
е	0.65 BSC		0.02	6 BSC
L	0.45	0.75	0.018	0.030
θ	0°	8°	0°	8°

Note: 1. Follow JEDEC MO-153 ACT.

- 2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
- 3. Dimension "E1" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side.

Carrier Tape & Reel Dimensions

Application	Α	Н	T1	С	d	D	W	E1	F
	330 ±2.00	50 MIN.	16.4+2.00 -0.00	13.0+0.50 -0.20	1.5 MIN.	20.2 MIN.	16.0 ±0.30	1.75 ±0.10	7.5 ±0.1
SSOP-20	P0	P1	P2	D0	D1	Т	A0	В0	K0
	4.0 ±0.10	8.0 ±0.10	2.0 ±0.10	1.5+0.10 -0.00	1.5 MIN.	0.6+0.00 -0.40	6.40 ±0.20	9.00 ±0.20	2.10 ±0.20
Application	Α	Н	T1	С	d	D	W	E1	F
	330.0 ±2.00	50 MIN.	16.4+2.00 -0.00	13.0+0.50 -0.20	1.5 MIN.	20.2 MIN.	16.0 ±0.30	1.75 ±0.10	7.50 ±0.10
TSSOP-20P	P0	P1	P2	D0	D1	T	A0	В0	K0
	4.00 ±0.10	8.00 ±0.10	2.00 ±0.10	1.5+0.10 -0.00	1.5 MIN.	0.30 ±0.05	6.9 ±0.20	6.90 ±0.20	1.60 ±0.20


(mm)

Devices Per Reel

Package Type	Unit	Quantity
SSOP-20	Tape & Reel	2500
TSSOP-20P	Tape & Reel	2000

Reflow Condition (IR/Convection or VPR Reflow)

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	MIL-STD-883D-2003	245°C, 5 sec
HOLT	MIL-STD-883D-1005.7	1000 Hrs Bias @125°C
PCT	JESD-22-B, A102	168 Hrs, 100%RH, 121°C
TST	MIL-STD-883D-1011.9	-65°C~150°C, 200 Cycles
ESD	MIL-STD-883D-3015.7	VHBM > 2KV, VMM > 200V
Latch-Up	JESD 78	$10ms, 1_{tr} > 100mA$

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate (T _L to T _P)	3°C/second max.	3°C/second max.
Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts)	100°C 150°C 60-120 seconds	150°C 200°C 60-180 seconds
Time maintained above: - Temperature (T _L) - Time (t _L)	183°C 60-150 seconds	217°C 60-150 seconds
Peak/Classification Temperature (Tp)	See table 1	See table 2
Time within 5°C of actual Peak Temperature (tp)	10-30 seconds	20-40 seconds
Ramp-down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

Note: All temperatures refer to topside of the package. Measured on the body surface.

Classification Reflow Profiles (Cont.)

Table 1. SnPb Eutectic Process – Package Peak Reflow Temperatures

Package Thickness	Volume mm ³ <350	Volume mm ³ ³ 350
<2.5 mm	240 +0/-5°C	225 +0/-5°C
≥2.5 mm	225 +0/-5°C	225 +0/-5°C

Table 2. Pb-free Process - Package Classification Reflow Temperatures

Package Thickness	Volume mm ³ <350	Volume mm ³ 350-2000	Volume mm ³ >2000
<1.6 mm	260 +0°C*	260 +0°C*	260 +0°C*
1.6 mm – 2.5 mm	260 +0°C*	250 +0°C*	245 +0°C*
≥2.5 mm	250 +0°C*	245 +0°C*	245 +0°C*

^{*}Tolerance: The device manufacturer/supplier **shall** assure process compatibility up to and including the stated classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C) at the rated MSL level.

Customer Service

Anpec Electronics Corp.

Head Office:

No.6, Dusing 1st Road, SBIP,

Hsin-Chu, Taiwan Tel: 886-3-5642000 Fax: 886-3-5642050

Taipei Branch:

2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan

Tel: 886-2-2910-3838 Fax: 886-2-2917-3838