

4M×4 CMOS DRAM (Fast Page) 3.3V Family

Features

- Organization: 4,194,304 words × 4 bits
- High speed
 - 50/60 ns \overline{RAS} access time
 - 25/30 ns column address access time
 - 12/15 ns $\overline{\text{CAS}}$ access time
- Low power consumption
 - Active: 500 mW max
 - Standby: 3.6 mW max, CMOS I/O
- Fast page mode

- Refresh
- 2048 refresh cycles, 32 ms refresh interval
- RAS-only or CAS-before-RAS refresh or self-refresh
- TTL-compatible, three-state I/O
- JEDEC standard package
 - 300 mil, 24/26-pin SOJ
- 3.3V power supply
- Latch-up current ≥ 200 mA
- ESD protection \geq 2000 volts
- Industrial and commercial temperature available

Pin arrangement

SOJ			TSOP*					
V _{CC}	AS4LC4M4F1	26	V _{CC}	AS4LC4M4F1	19			
A10	AS4LC	19 A8 18 A7 17 A6 16 A5 15 A4 14 GND	A10 = 8 A0 = 9 A1 = 10 A2 = 11 A3 = 12 V _{CC} = 13	AS4LC	26			

*TSOP availability to be determined

Pin designation

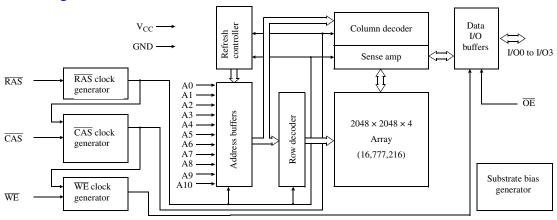
in designation					
Pin(s)	Description				
A0 to A10	Address inputs				
RAS	Row address strobe				
CAS	Column address strobe				
WE	Write enable				
I/O0 to I/O3	Input/output				
ŌĒ	Output enable				
v_{cc}	Power				
GND	Ground				

Selection guide

	Symbol	AS4LC4M4F1-50	AS4LC4M4F1-60	Unit
Maximum RAS access time	t _{RAC}	50	60	ns
Maximum column address access time	t _{CAA}	25	30	ns
Maximum CAS access time	t _{CAC}	12	15	ns
Maximum output enable (\overline{OE}) access time	t _{OEA}	13	15	ns
Minimum read or write cycle time	t _{RC}	80	100	ns
Minimum fast page mode cycle time	t _{PC}	25	30	ns
Maximum operating current	I _{CC1}	120	110	mA
Maximum CMOS standby current	I _{CC5}	1.0	1.0	mA

Functional description

The AS4LC4M4F1 is a high performance 16-megabit CMOS Dynamic Random Access Memory (DRAM) device organized as 4,194,304 words × 4 bits. The device is fabricated using advanced CMOS technology and innovative design techniques resulting in high speed, extremely low power and wide operating margins at component and system levels. The Alliance 16Mb DRAM family is optimized for use as main memory in PC, workstation, router and switch applications.


This device features a high speed page-mode operation where read and write operations within a single row (or page) can be executed at very high speed by toggling column addresses within that row. Row and column addresses are alternately latched into input buffers using the falling edge of RAS and CAS inputs respectively. Also, RAS is used to make the column address latch transparent, enabling application of column addresses prior to CAS assertion.

Refresh on the 2048 address combinations of A0 to A10 must be performed every 32 ms using:

- RAS-only refresh: RAS is asserted while CAS is held high. Each of the 2048 rows must be strobed. Outputs remain high impedence.
- Hidden refresh: \overline{CAS} is held low while \overline{RAS} is toggled. Refresh address is generated internally. Outputs remain low impedence with previous valid data.
- CAS-before-RAS refresh (CBR): CAS is asserted prior to RAS. Refresh address is generated internally. Outputs are high-impedence (OE and WE are don't care).
- Normal read or write cycles refresh the row being accessed.
- Self-refresh cycles

The AS4LC4M4F1 is available in the standard 24/26-pin plastic SOJ. TSOP 24/26-pin availability is to be determined. The AS4LC4M4F1 operates with a single power supply of $3.3V \pm 0.3V$ and provides TTL compatible inputs and outputs.

Logic block diagram for 2K refresh

Recommended operating conditions

recommended operating conditions										
Parameter		Symbol	Min	Nominal	Max	Unit				
C		V _{CC}	3.0	3.3	3.6	V				
Supply voltage		GND	0.0	0.0	0.0	V				
T 1.		V _{IH}	2.0	-	V _{CC+0.5V}	V				
Input voltage		V_{IL}	-0.5†	-	0.8	V				
A 11	Commercial	т	0	-	70	°C				
Ambient operating temperature	Industrial	T_A	-40	-	85	°C				

 $^{^{\}dagger}V_{II}$ min -3.0V for pulse widths less than 5 ns. Recommended operating conditions apply throughout this document unlesss otherwise specified.

Absolute maximum ratings

Parameter	Symbol	Min	Max	Unit
Input voltage	V _{in}	-1.0	4.6	V
Input voltage (DQs)	V_{DQ}	-1.0	4.6	V
Power supply voltage	V _{CC}	-1.0	4.6	V
Storage temperature (plastic)	T _{STG}	-55	150	°C
Soldering temperature × time	T _{SOLDER}	_	260 × 10	°C × sec
Power dissipation	P_{D}	_	0.432	W
Short circuit output current	I _{out}	_	50	mA

DC electrical characteristics

				50	-6	50		
Parameter	Symbol	Test conditions	Min	Max	Min	Max	Unit	Notes
Input leakage current	${ m I}_{ m IL}$	$0V \le V_{in} \le +V_{cc}(max)$ Pins not under test = $0V$	-5	+5	-5	+5	μΑ	
Output leakage current	I_{OL}	D_{OUT} disabled, $0V \le V_{out} \le + V_{cc}(max)$	-5	+5	-5	+5	μΑ	
Operating power supply current	I _{CC1}	CAS, Address cycling; t _{RC} =min	-	120	-	110	mA	1,2
TTL standby power supply current	I_{CC2}	$\overline{RAS} = \overline{CAS} \ge V_{IH}$	I	2.0	I	2.0	mA	
Average power supply current, RAS refresh mode or CBR	I_{CC3}	\overline{RAS} cycling, $\overline{CAS} \ge V_{IH}$, $t_{RC} = \min \text{ of } \overline{RAS} \text{ low after } \overline{CAS} \text{ low.}$	_	120	_	110	mA	1
Fast page mode average power supply current	I_{CC4}	$\overline{RAS} = V_{IL}$, \overline{CAS} , address cycling: $t_{HPC} = min$	_	90	_	80	mA	1, 2
CMOS standby power supply current	I _{CC5}	$\overline{RAS} = \overline{CAS} = V_{CC} - 0.2V$	ı	2.0	1	2.0	mA	
Output voltage	V_{OH}	$I_{OUT} = -2.0 \text{ mA}$	2.4	ı	2.4	_	V	
Output voltage	V_{OL}	$I_{OUT} = 2.0 \text{ mA}$	_	0.4	_	0.4	V	
CAS before RAS refresh current	I_{CC6}	\overline{RAS} , \overline{CAS} cycling, $t_{RC} = \min$	I	120	I	110	mA	
Self refresh current	I _{CC7}	$\overline{RAS} = \overline{CAS} \le 0.2v,$ $\overline{WE} - \overline{OE} \ge V_{CC} - 0.2V,$ all other inputs at 0.2V or V_{CC} - 0.2V	-	0.6	-	0.6	mA	

AC parameters common to all waveforms

			-50 -60				
Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{RC}	Random read or write cycle time	80	_	100	_	ns	
t _{RP}	RAS precharge time	30	_	40	_	ns	
t _{RAS}	RAS pulse width	50	10K	60	10K	ns	
t _{CAS}	CAS pulse width	8	10K	10	10K	ns	
t_{RCD}	RAS to CAS delay time	15	35	15	43	ns	6
t _{RAD}	RAS to column address delay time	12	25	12	30	ns	7
t _{RSH}	CAS to RAS hold time	10	_	10	_	ns	
t _{CSH}	RAS to CAS hold time	40	_	50	_	ns	
t _{CRP}	CAS to RAS precharge time	5	_	5	_	ns	
t _{ASR}	Row address setup time	0	_	0	_	ns	
t _{RAH}	Row address hold time	8	_	10	_	ns	
t_{T}	Transition time (rise and fall)	1	50	1	50	ns	4,5
t _{REF}	Refresh period	_	64	-	64	ms	3
t _{CP}	CAS precharge time	8	_	10	_	ns	
t _{RAL}	Column address to RAS lead time	25	_	30	_	ns	
t _{ASC}	Column address setup time	0	_	0	_	ns	
t _{CAH}	Column address hold time	8		10		ns	

Read cycle

		-50		-60			
Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{RAC}	Access time from RAS	-	50	_	60	ns	6
t _{CAC}	Access time from CAS	-	12	_	15	ns	6,13
t _{AA}	Access time from address	-	25	_	30	ns	7,13
t _{RCS}	Read command setup time	0	-	0	-	ns	
t _{RCH}	Read command hold time to $\overline{\text{CAS}}$	0	_	0	_	ns	9
t _{RRH}	Read command hold time to RAS	0	_	0	_	ns	9

Write cycle

		-50		-60			
Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{WCS}	Write command setup time	0	-	0	_	ns	11
t _{WCH}	Write command hold time	10	-	10	_	ns	11
t _{WP}	Write command pulse width	10	-	10	_	ns	
t _{RWL}	Write command to RAS lead time	10	-	10		ns	
t_{CWL}	Write command to CAS lead time	8	-	10	_	ns	
t_{DS}	Data-in setup time	0	-	0	_	ns	12
t_{DH}	Data-in hold time	8	-	10	_	ns	12

Read-modify-write cycle

		-50 -60					
Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{RWC}	Read-write cycle time	113	-	135	_	ns	
t _{RWD}	RAS to WE delay time	67	-	77		ns	11
$t_{\rm CWD}$	CAS to WE delay time	32	-	35	_	ns	11
t _{AWD}	Column address to WE delay time	42	-	47	_	ns	11

Refresh cycle

		-50		-60			
Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{CSR}	$\overline{\text{CAS}}$ setup time ($\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$)	5	-	5	_	ns	3
t _{CHR}	$\overline{\text{CAS}}$ hold time ($\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$)	8	-	10	_	ns	3
t _{RPC}	RAS precharge to CAS hold time	0	-	0	_	ns	
t _{CPT}	CAS precharge time (CBR counter test)	10		10	-	ns	

Fast page mode cycle

		-50		-60			
Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{CPA}	Access time from CAS precharge	_	28	_	35		13
t _{RASP}	RAS pulse width	50	100K	60	100K		
t _{PC}	Read-write cycle time	30	_	35	_		
t _{CP}	CAS precharge time (fast page)	10	_	10	_		
t _{PCM}	Fast page mode RMW cycle	80	_	85	_		
t _{CRW}	Page mode CAS pulse width (RMW)	12	_	15	_		

Output enable

		-50		-60			
Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{CLZ}	CAS to output in Low Z	0	_	0	-	ns	8
t _{ROH}	\overline{RAS} hold time referenced to \overline{OE}	8	_	10	-	ns	
t _{OEA}	OE access time	_	13	-	15	ns	
t _{OED}	OE to data delay	13	_	15	-	ns	
t _{OEZ}	Output buffer turnoff delay from $\overline{\text{OE}}$	0	13	0	15	ns	8
t _{OEH}	OE command hold time	10	_	10	-	ns	
t _{OLZ}	OE to output in Low Z	0	_	0	-	ns	
t _{OFF}	Output buffer turn-off time	0	13	0	15	ns	8,10

Self-refresh cycle

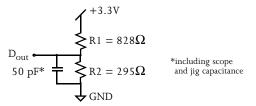
		-50		-60			
Std Symbol	Parameter	Min	Max	Min	Max	Unit	Notes
t _{RASS}	RAS pulse width (CBR self refresh)	100	-	100	-	μs	15
t _{RPS}	RAS precharge time (CBR self refresh)	90	-	105	-	ns	
t _{CHS} CAS hold time (CBR self refresh)		8	-	10	-	nx	

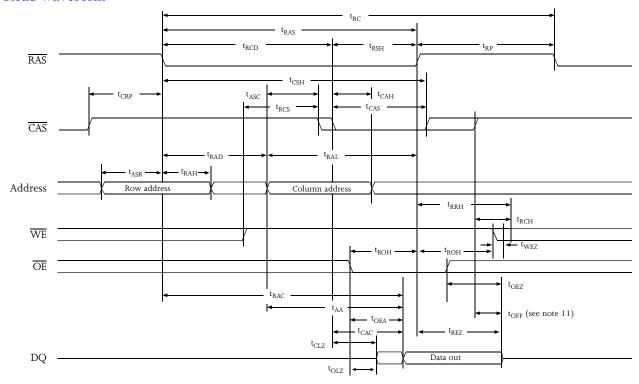
Notes

- 1 I_{CC1} , I_{CC3} , I_{CC4} , and I_{CC6} are dependent on frequency.
- 2 I_{CC1} and I_{CC4} depend on output loading. Specified values are obtained with the output open.
- 3 An initial pause of 200 µs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved. In the case of an internal refresh counter, a minimum of 8 CAS-before-RAS initialization cycles instead of 8 RAS cycles are required. 8 initialization cycles are required after extended periods of bias without clocks (greater than 8 ms).
- 4 AC Characteristics assume $t_T = 2$ ns. All AC parameters are measured with a load equivalent to two TTL loads and 100 pF, V_{IL} (min) \geq GND and V_{IH} (max) \leq V_{CC} .
- 5 V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Transition times are measured between V_{IH} and V_{IL}
- 6 Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only. If t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- 7 Operation within the t_{RAD} (max) limit insures that t_{RAC} (max) can be met. t_{RAD} (max) is specified as a reference point only. If t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled exclusively by t_{AA} .
- 8 Assumes three state test load (5 pF and a 380 Ω Thevenin equivalent).
- 9 Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 10 t_{OFF} (max) defines the time at which the output achieves the open circuit condition; it is not referenced to output voltage levels. t_{OFF} is referenced from rising edge of RAS or CAS, whichever occurs last.
- 11 t_{WCS} , t_{WCH} , t_{RWD} t_{CWD} and t_{AWD} are not restrictive operating parameters. They are included in the datasheet as electrical characteristics only. If $t_{WS} \ge t_{WS}$ (min) and $t_{WH} \ge t_{WH}$ (min), the cycle is an early write cycle and data out pins will remain open circuit, high impedance, throughout the cycle. If $t_{RWD} \ge t_{RWD}$ (min), $t_{CWD} \ge t_{CWD}$ (min) and $t_{AWD} \ge t_{AWD}$ (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is satisfied, the condition of the data out at access time is indeterminate.
- 12 These parameters are referenced to CAS leading edge in early write cycles and to WE leading edge in read-write cycles.
- 13 Access time is determined by the longest of t_{CAA} or t_{CAC} or t_{CPA}
- 14 $t_{ASC} \ge t_{CP}$ to achieve t_{PC} (min) and t_{CPA} (max) values.
- 15 These parameters are sampled and not 100% tested.

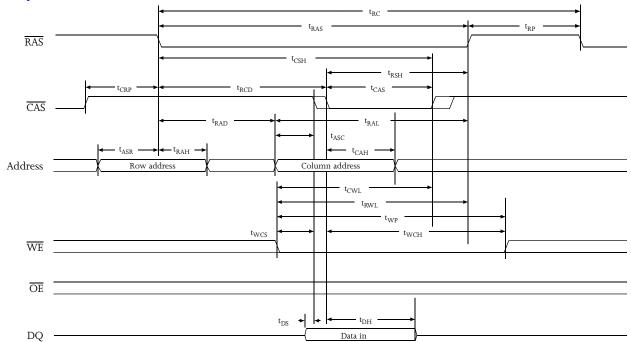
AC test conditions

- Access times are measured with output reference levels of $V_{OH}=2.4V$ and $V_{OL}=0.4V, \\V_{IH}=2.0V$ and $V_{II}=0.8V$
- Input rise and fall times: 2 ns



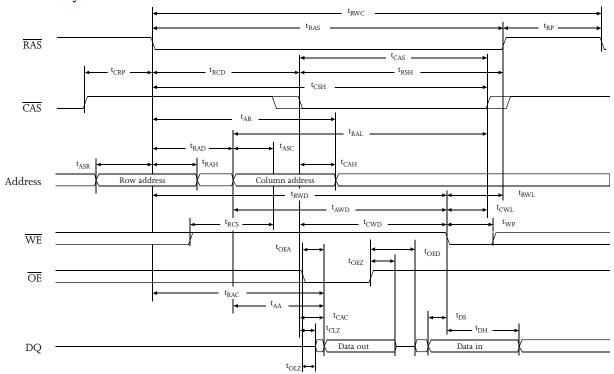

Figure A: Equivalent output load (AS4LC4M4F1)

Key to switching waveforms

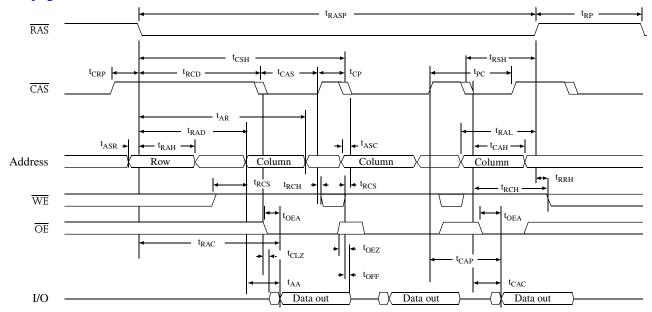

Rising input	Falling input	Undefined output/don't care
--------------	---------------	-----------------------------

Read waveform

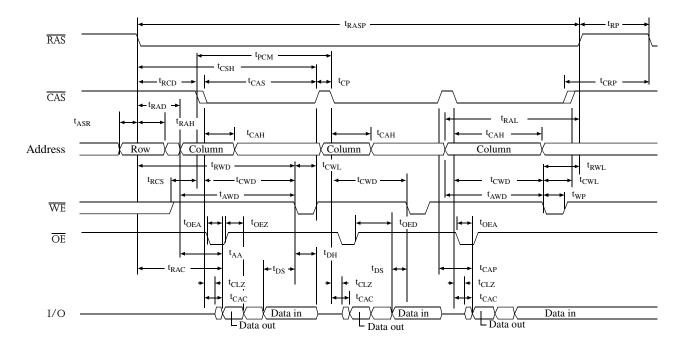
Early write waveform



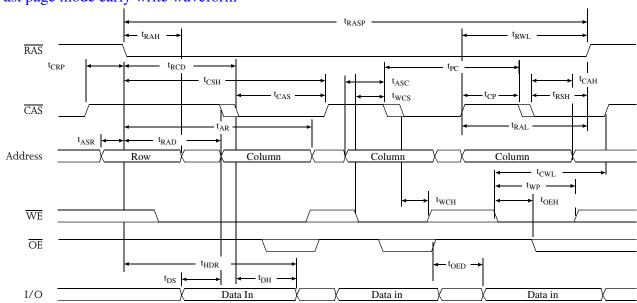
Write waveform $\overline{\text{OE}}$ controlled t_{RC} $t_{\rm RAS}$ t_{RP} RAS t_{CSH} - t_{RSH} t_{RCD} t_{CAS} CAS t_{RAL} t_{RAD} t_{RAH} Address Row address Column address t_{RWL} -WE t_{OEH} OE $t_{\rm OED}$


Read-modify-write waveform

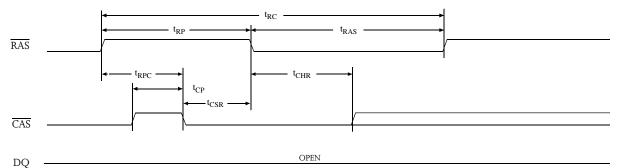
DQ



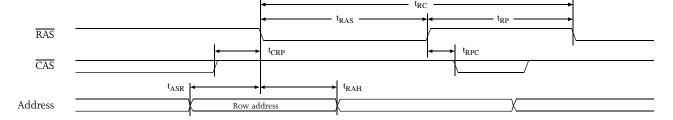
Fast page mode read waveform



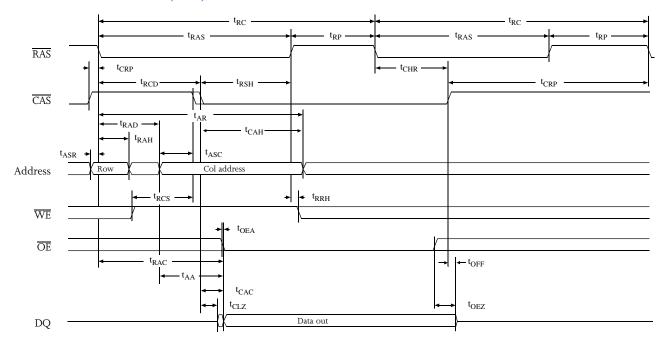
Fast page mode byte write waveform



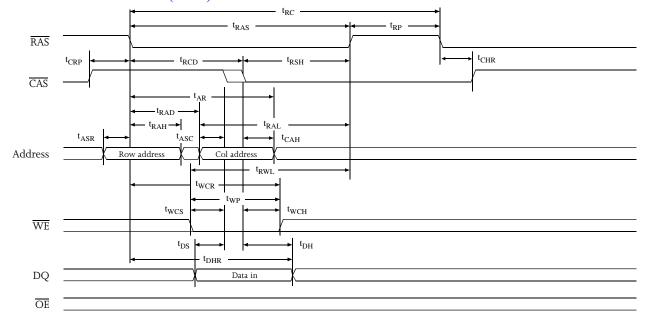
Fast page mode early write waveform


\overline{CAS} before \overline{RAS} refresh waveform

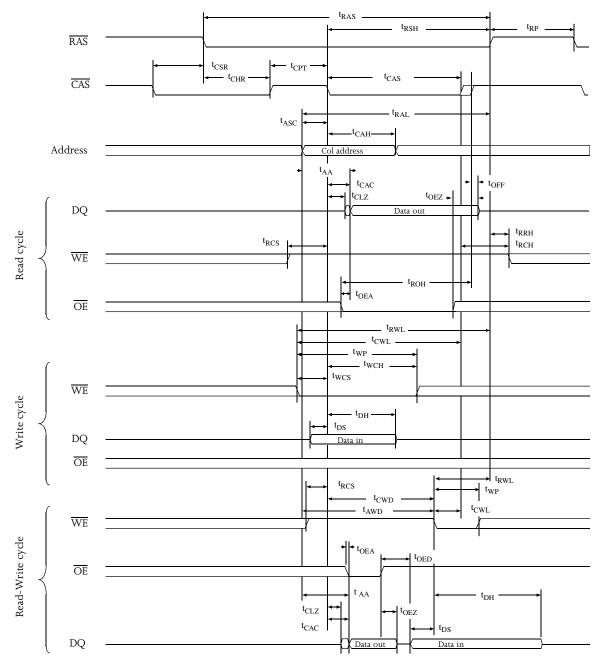
 $\overline{\text{WE}} = V_{\text{IH}}$


\overline{RAS} only refresh waveform

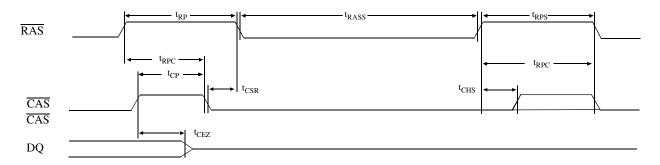
 $\overline{\text{WE}} = \overline{\text{OE}} = V_{\text{IH}} \text{ or } V_{\text{IL}}$



Hidden refresh waveform (read)



Hidden refresh waveform (write)



CAS before RAS refresh counter test waveform

CAS-before-RAS self refresh cycle

Capacitance 15

f = 1 MHz, $T_a =$ Room temperature

			,	a i	
Parameter	Symbol	Signals	Test conditions	Max	Unit
I	C_{IN1}	A0 to A10	$V_{in} = 0V$	5	pF
Input capacitance	C _{IN2}	RAS, CAS, WE, OE	$V_{in} = 0V$	7	pF
DQ capacitance	C_{DQ}	DQ0 to DQ03	$V_{\rm in} = V_{\rm out} = 0V$	7	pF

AS4LC4M4F1 ordering information

Package \ \(\overline{RAS} \) access time	50 ns	60 ns	
Plastic SOJ, 300 mil, 24/26-pin	3.3V	AS4LC4M4F1-50JC AS4LC4M4F1-50JI	AS4LC4M4F1-60JC AS4LC4M4F1-60JI
Plastic TSOP, 300 mil, 24/26-pin*	3.3V	AS4LC4M4F1-50TC AS4LC4M4F1-50TI	AS4LC4M4F1-60TC AS4LC4M4F1-60TI

^{*} Shading indicates availability is TBD.

AS4LC4M4F1 family part numbering system

AS4	LC	4M4	F1	–XX	X	X
DRAM prefix	LC = 3.3V CMOS	4M×4	F1=2K refresh	RAS access time	, c	Temperature range C=Commercial, 0°C to 70 °C I=Industrial, -40°C to 85°C

5/16/01; v.1.0 Restored

Alliance Semiconductor

P. 14 of 14

© Copyright Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Horage or correct this data at any time, without notice. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchanbility, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights, mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products from sale critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assu