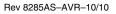
## **Features**

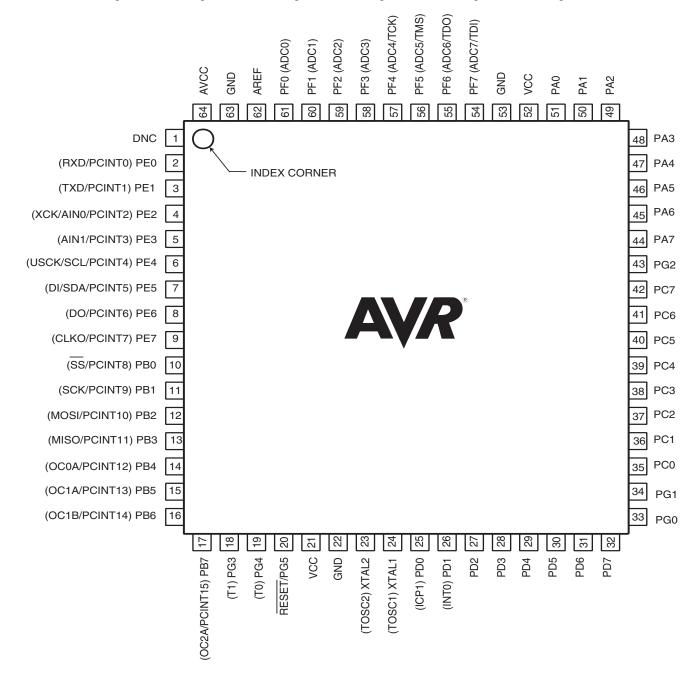

- High Performance, Low Power AVR® 8-Bit Microcontroller
- Advanced RISC Architecture
  - 130 Powerful Instructions Most Single Clock Cycle Execution
  - 32 x 8 General Purpose Working Registers
  - Fully Static Operation
  - Up to 16 MIPS Throughput at 16 MHz (ATmega165PA/645P)
  - Up to 20 MIPS Throughput at 20 MHz
    - (ATmega165A/325A/325PA/645A/3250A/3250PA/6450A/6450P)
  - On-Chip 2-cycle Multiplier
- High Endurance Non-volatile Memory segments
  - In-System Self-programmable Flash Program Memory
    - 16K Bytes (ATmega165A/ATmega165PA)
    - 32K Bytes (ATmega325A/ATmega325PA/ATmega3250A/ATmega3250PA)
    - 64K Bytes (ATmega645A/ATmega645P/ATmega6450A/ATmega6450P)
  - EEPROM
    - 512 Bytes (ATmega165A/ATmega165PA)
    - 1K bytes (ATmega325A/ATmega325PA/ATmega3250A/ATmega3250PA)
    - 2K bytes (ATmega645A/ATmega645P/ATmega6450A/ATmega6450P)
  - Internal SRAM
    - 1K Bytes (ATmega165A/ATmega165PA)
    - 2K Bytes (ATmega325A/ATmega325PA/ATmega3250A/ATmega3250PA)
    - 4K Bytes (ATmega645A/ATmega645P/ATmega6450A/ATmega6450P)
  - Write/Erase cycles: 10,000 Flash/100,000 EEPROM
  - Data retention: 20 years at 85°C/100 years at 25°C<sup>(1)</sup>
  - Optional Boot Code Section with Independent Lock Bits
    - In-System Programming by On-chip Boot Program
    - True Read-While-Write Operation
  - Programming Lock for Software Security
- QTouch® library support
  - Capacitive touch buttons, sliders and wheels
  - QTouch and QMatrix acquisition
  - Up to 64 sense channels
- JTAG (IEEE std. 1149.1 compliant) Interface
  - Boundary-scan Capabilities According to the JTAG Standard
  - Extensive On-chip Debug Support
- Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
  - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
  - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
  - Real Time Counter with Separate Oscillator
  - Four PWM Channels
  - 8-channel, 10-bit ADC
  - Programmable Serial USART
  - Master/Slave SPI Serial Interface
  - Universal Serial Interface with Start Condition Detector
  - Programmable Watchdog Timer with Separate On-chip Oscillator
  - On-chip Analog Comparator
  - Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
  - Power-on Reset and Programmable Brown-out Detection
  - Internal Calibrated Oscillator
  - External and Internal Interrupt Sources
  - Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
- I/O and Packages
  - 54/69 Programmable I/O Lines
  - 64/100-lead TQFP, 64-pad QFN/MLF and 64-pad DRQFN
- Speed Grade
  - ATmega 165A/165PA/645A/645P: 0 16 MHz @ 1.8 5.5V
  - ATmega325A/325PA/3250A/3250PA/6450A/6450P: 0 20MHz @ 1.8 5.5V
- Temperature range:
  - -40°C to 85°C Industrial
- Ultra-Low Power Consumption (picoPower devices)
  - Active Mode:
    - 1 MHz, 1.8V: 215 μA
    - 32 kHz, 1.8V: 8 µA (including Oscillator)
  - Power-down Mode: 0.1 µA at 1.8V
  - Power-save Mode: 0.6 µA at 1.8V (Including 32 kHz RTC

 Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.



8-bit **AVR**® Microcontroller with 16/32/64K Bytes In-System Programmable Flash

ATmega165A
ATmega325A
ATmega325PA
ATmega3250A
ATmega3250PA
ATmega645A
ATmega645P
ATmega6450P
ATmega6450P
Preliminary
Summary

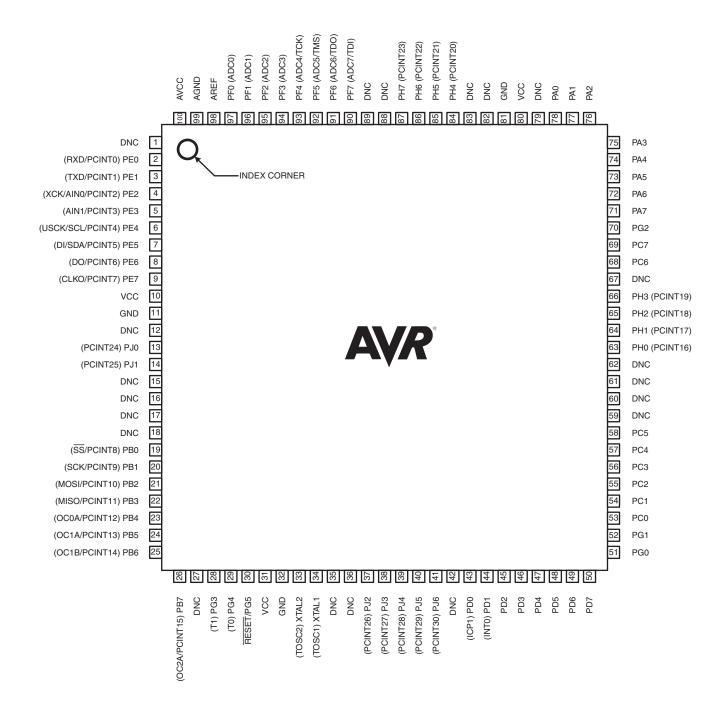





## 1. Pin Configurations

## 1.1 Pinout - TQFP and QFN/MLF

**Figure 1-1.** 64A (TQFP)and 64M1 (QFN/MLF) Pinout ATmega165A/ATmega165PA/ATmega325A/ATmega325PA/ATmega645A/ATmega645P



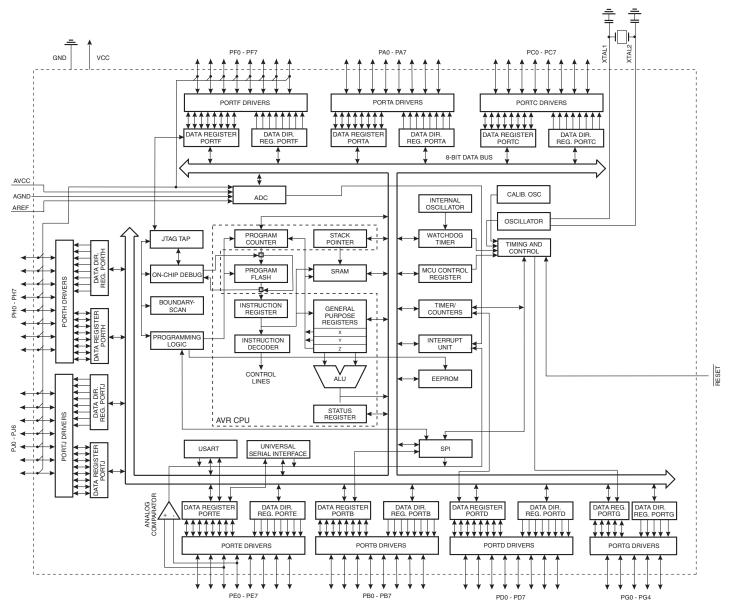

Note: The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.



## 1.2 Pinout - 100A (TQFP)

**Figure 1-2.** Pinout ATmega3250A/ATmega3250PA/ATmega6450A/ATmega6450P **TQFP** 






## 2. Overview

The ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, this microcontroller achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

## 2.1 Block Diagram

Figure 2-1. Block Diagram



The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.



## IATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P

The ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P provides the following features: 16K/32K/64K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512/1K/2K bytes EEPROM, 1K/2K/4K byte SRAM, 54/69 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8-channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.

Atmel offers the QTouch® library for embedding capacitive touch buttons, sliders and wheels functionality into AVR microcontrollers. The patented charge-transfer signal acquisition offers robust sensing and includes fully debounced reporting of touch keys and includes Adjacent Key Suppression® (AKSTM™) technology for unambiguous detection of key events. The easy-to-use QTouch Suite toolchain allows you to explore, develop and debug your own touch applications.

The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel devise is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.



## 2.2 Comparison Between ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P

**Table 2-1.** Differences between: ATmega165A/165PA/325A/325PA/3250PA/645P/645DA/645P/6450A/645P

| Device       | Flash     | EEPROM    | RAM     | MHz |
|--------------|-----------|-----------|---------|-----|
| ATmega165A   | 16 Kbyte  | 512 Bytes | 1 Kbyte | 16  |
| ATmega165PA  | 16 Kbyte  | 512 Bytes | 1 Kbyte | 16  |
| ATmega325A   | 32 Kbyte  | 1 Kbyte   | 2 Kbyte | 20  |
| ATmega325PA  | 32 Kbyte  | 1 Kbyte   | 2 Kbyte | 20  |
| ATmega3250A  | 32K bytes | 1 Kbyte   | 2 Kbyte | 20  |
| ATmega3250PA | 32 Kbyte  | 1 Kbyte   | 2 Kbyte | 20  |
| ATmega645A   | 64 Kbyte  | 2 Kbyte   | 4 Kbyte | 16  |
| ATmega645P   | 64 Kbyte  | 2 Kbyte   | 4 Kbyte | 16  |
| ATmega6450A  | 64 Kbyte  | 2 Kbyte   | 4 Kbyte | 20  |
| ATmega6450P  | 64 Kbyte  | 2 Kbyte   | 4 Kbyte | 20  |

## 2.3 Pin Descriptions

### 2.3.1 VCC

Digital supply voltage.

### 2.3.2 GND

Ground.

### 2.3.3 Port A (PA7:PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P as listed on "Alternate Functions of Port B" on page 76.

## 2.3.4 Port B (PB7:PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P as listed on "Alternate Functions of Port B" on page 76.



### 2.3.5 Port C (PC7:PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port C also serves the functions of special features of the ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P as listed on "Alternate Functions of Port D" on page 79.

### 2.3.6 Port D (PD7:PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P as listed on "Alternate Functions of Port D" on page 79.

## 2.3.7 Port E (PE7:PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port E also serves the functions of various special features of the ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P as listed on "Alternate Functions of Port E" on page 80.

## 2.3.8 Port F (PF7:PF0)

Port F serves as the analog inputs to the A/D Converter.

Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface, see "Alternate Functions of Port F" on page 82.

### 2.3.9 Port G (PG5:PG0)

Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running.



## ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P

Port G also serves the functions of various special features of the ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P as listed on page 84.

## 2.3.10 Port H (PH7:PH0)

Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port H output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port H pins that are externally pulled low will source current if the pull-up resistors are activated. The Port H pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port H also serves the functions of various special features of the ATmega3250A/3250PA/6450A/6450P as listed on page 85.

### 2.3.11 Port J (PJ6:PJ0)

Port J is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port J output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port J pins that are externally pulled low will source current if the pull-up resistors are activated. The Port J pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port J also serves the functions of various special features of the ATmega3250A/3250PA/6450A/6450P as listed on page 87.

### 2.3.12 **RESET**

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 27-13 on page 327. Shorter pulses are not guaranteed to generate a reset.

## 2.3.13 XTAL1

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.

### 2.3.14 XTAL2

Output from the inverting Oscillator amplifier.

### 2.3.15 AVCC

AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to  $V_{CC}$ , even if the ADC is not used. If the ADC is used, it should be connected to  $V_{CC}$  through a low-pass filter.

### 2.3.16 AREF

This is the analog reference pin for the A/D Converter.



## 3. Resources

A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr.

## 4. Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C.

## 5. About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

These code examples assume that the part specific header file is included before compilation. For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".



# 6. Register Summary

Note: Registers with bold type only available in ATmega3250A/3250PA/6450A/6450P.

|         |          |        |        |        |        |              |               |                   |        | _    |
|---------|----------|--------|--------|--------|--------|--------------|---------------|-------------------|--------|------|
| Address | Name     | Bit 7  | Bit 6  | Bit 5  | Bit 4  | Bit 3        | Bit 2         | Bit 1             | Bit 0  | Page |
| (0xFF)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xFE)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xFD)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xFC)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xFB)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xFA)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xF9)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xF8)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xF7)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xF6)  | Reserved |        |        |        |        |              |               |                   |        |      |
|         | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xF5)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xF4)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xF3)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xF2)  |          |        |        |        |        |              |               |                   |        |      |
| (0xF1)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xF0)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xEF)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xEE)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xED)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xEC)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xEB)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xEA)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xE9)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xE8)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xE7)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xE6)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xE5)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xE4)  | Reserved |        |        |        |        |              |               |                   |        |      |
| (0xE3)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xE2)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xE1)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xE0)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xDF)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xDE)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xDL)  | PORTJ    | -      | PORTJ6 | PORTJ5 | PORTJ4 | PORTJ3       | PORTJ2        | PORTJ1            | PORTJ0 | 93   |
| (0xDC)  | DDRJ     | -      | DDJ6   | DDJ5   | DDJ4   | DDJ3         | DDJ2          | DDJ1              | DDJ0   | 93   |
|         | PINJ     | -      | PINJ6  | PINJ5  | PINJ4  | PINJ3        | PINJ2         | PINJ1             | PINJ0  | 93   |
| (0xDB)  | PORTH    | PORTH7 | PORTH6 | PORTH5 | PORTH4 | PORTH3       | PORTH2        | PORTH1            | PORTH0 | 92   |
| (0xDA)  | DDRH     | DDH7   | DDH6   | DDH5   | DDH4   | DDH3         | DDH2          | DDH1              | DDH0   | 93   |
| (0xD9)  | PINH     | PINH7  |        |        |        |              |               |                   |        | 93   |
| (0xD8)  |          |        | PINH6  | PINH5  | PINH4  | PINH3        | PINH2         | PINH1             | PINH0  | 93   |
| (0xD7)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xD6)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xD5)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xD4)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xD3)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xD2)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xD1)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xD0)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xCF)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xCE)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xCD)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xCC)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xCB)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xCA)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xC9)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xC8)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xC7)  | Reserved | -      | -      | -      | -      | -            | -             | -                 | -      |      |
| (0xC6)  | UDR0     |        |        |        |        | ata Register |               |                   |        | 193  |
| (0xC5)  | UBRR0H   |        |        |        |        | <u> </u>     | USART0 Baud R | ate Register High |        | 197  |
| (いえしむ)  | 1        |        |        |        |        |              | Dadd 11       |                   |        |      |



## ■ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P

| Address | Name     | Bit 7  | Bit 6  | Bit 5  | Bit 4              | Bit 3              | Bit 2   | Bit 1   | Bit 0   | Page |
|---------|----------|--------|--------|--------|--------------------|--------------------|---------|---------|---------|------|
| (0xC4)  | UBRR0L   |        | •      | •      | USART0 Baud F      | Rate Register Low  |         | •       | •       | 197  |
| (0xC3)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xC2)  | UCSR0C   | -      | UMSEL0 | UPM01  | UPM00              | USBS0              | UCSZ01  | UCSZ00  | UCPOL0  | 195  |
| (0xC1)  | UCSR0B   | RXCIE0 | TXCIE0 | UDRIE0 | RXEN0              | TXEN0              | UCSZ02  | RXB80   | TXB80   | 194  |
| (0xC0)  | UCSR0A   | RXC0   | TXC0   | UDRE0  | FE0                | DOR0               | UPE0    | U2X0    | MPCM0   | 193  |
| (0xBF)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xBE)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xBD)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xBC)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xBB)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xBA)  | USIDR    |        |        |        |                    | Register           |         |         |         | 206  |
| (0xB9)  | USISR    | USISIF | USIOIF | USIPF  | USIDC              | USICNT3            | USICNT2 | USICNT1 | USICNT0 | 206  |
| (0xB8)  | USICR    | USISIE | USIOIE | USIWM1 | USIWM0             | USICS1             | USICS0  | USICLK  | USITC   | 207  |
| (0xB7)  | Reserved | -      | -      | -      | -                  | -                  |         | -       | -       |      |
| (0xB6)  | ASSR     | -      | -      | -      | EXCLK              | AS2                | TCN2UB  | OCR2UB  | TCR2UB  | 157  |
| (0xB5)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xB4)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xB3)  | OCR2A    |        |        | Tim    |                    | ut Compare Registe | er A    |         |         | 156  |
| (0xB2)  | TCNT2    |        |        |        |                    | Counter2           |         |         |         | 156  |
| (0xB1)  | Reserved | -      | -      | -      | -                  | -                  |         | -       | -       |      |
| (0xB0)  | TCCR2A   | FOC2A  | WGM20  | COM2A1 | COM2A0             | WGM21              | CS22    | CS21    | CS20    | 154  |
| (0xAF)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xAE)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xAD)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xAC)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xAB)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xAA)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xA9)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (8Ax0)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xA7)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xA6)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xA5)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xA4)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xA3)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xA2)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xA1)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0xA0)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x9F)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x9E)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x9D)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x9C)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x9B)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x9A)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x99)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x98)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x97)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x96)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x95)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x94)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x93)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x92)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x91)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x90)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x8F)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x8E)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x8D)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x8C)  | Reserved | -      | -      | -      | -                  | -                  | -       | -       | -       |      |
| (0x8B)  | OCR1BH   |        |        |        |                    | Compare Register E | -       |         |         | 134  |
| (A8x0)  | OCR1BL   |        |        |        |                    | Compare Register I |         |         |         | 134  |
| (0x89)  | OCR1AH   |        |        |        |                    | Compare Register A | -       |         |         | 134  |
| (0x88)  | OCR1AL   |        |        |        |                    | Compare Register   |         |         |         | 134  |
| (0x87)  | ICR1H    |        |        |        |                    | Capture Register H | -       |         |         | 135  |
| (0x86)  | ICR1L    |        |        | Tir    | mer/Counter1 Input | Capture Register L | LOW WO  |         |         | 135  |



## ■ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P

| Address                    | Name                 | Bit 7              | Bit 6              | Bit 5              | Bit 4                  | Bit 3              | Bit 2             | Bit 1            | Bit 0             | Page      |
|----------------------------|----------------------|--------------------|--------------------|--------------------|------------------------|--------------------|-------------------|------------------|-------------------|-----------|
| (0x85)                     | TCNT1H               |                    |                    | 1                  | Timer/Cou              | unter1 High        | 1                 | 1                |                   | 134       |
| (0x84)                     | TCNT1L               |                    |                    |                    | Timer/Co               | unter1 Low         |                   |                  |                   | 134       |
| (0x83)                     | Reserved             | -                  | -                  | _                  | -                      | -                  | _                 | -                | -                 |           |
| (0x82)                     | TCCR1C               | FOC1A              | FOC1B              | -                  | -                      | -                  | -                 | -                | -                 | 133       |
| (0x81)                     | TCCR1B               | ICNC1              | ICES1              | -                  | WGM13                  | WGM12              | CS12              | CS11             | CS10              | 132       |
| (0x80)                     | TCCR1A               | COM1A1             | COM1A0             | COM1B1             | COM1B0                 | -                  | -                 | WGM11            | WGM10             | 130       |
| (0x7F)                     | DIDR1                | -                  | -                  | -                  | -                      | -                  | -                 | AIN1D            | AIN0D             | 213       |
| (0x7E)                     | DIDR0                | ADC7D              | ADC6D              | ADC5D              | ADC4D                  | ADC3D              | ADC2D             | ADC1D            | ADC0D             | 231       |
| (0x7D)                     | Reserved             | -                  | _                  | -                  | -                      | -                  | -                 | -                | _                 |           |
| (0x7C)                     | ADMUX                | REFS1              | REFS0              | ADLAR              | MUX4                   | MUX3               | MUX2              | MUX1             | MUX0              | 227       |
| (0x7B)                     | ADCSRB               | -                  | ACME               | -                  | _                      | _                  | ADTS2             | ADTS1            | ADTS0             | 231       |
| (0x7A)                     | ADCSRA               | ADEN               | ADSC               | ADATE              | ADIF                   | ADIE               | ADPS2             | ADPS1            | ADPS0             | 229       |
| (0x79)                     | ADCH                 |                    |                    |                    | ADC Data F             | Register High      |                   | 1                |                   | 230       |
| (0x78)                     | ADCL                 |                    |                    |                    |                        | Register Low       |                   |                  |                   | 230       |
| (0x77)                     | Reserved             | -                  | -                  | _                  | -                      | -                  | _                 | _                | -                 |           |
| (0x77)<br>(0x76)           | Reserved             | _                  |                    | _                  | _                      | _                  | _                 | _                | _                 |           |
| (0x75)                     | Reserved             | _                  | _                  | _                  | _                      | _                  | _                 | _                |                   |           |
| (0x73)<br>(0x74)           | Reserved             | _                  |                    | _                  | _                      | _                  | _                 | _                |                   |           |
| . ,                        | PCMSK3               | _                  | PCINT30            | PCINT29            | PCINT28                | PCINT27            | PCINT26           | PCINT25          | PCINT24           | 66        |
| (0x73)                     | Reserved             | _                  | -                  | -                  | -                      | -                  | -                 | -                | -                 |           |
| (0x72)                     | Reserved             | _                  |                    | _                  |                        |                    | _                 | _                | <u>-</u>          |           |
| (0x71)                     | TIMSK2               | _                  |                    | _                  | _                      | _                  | _                 | OCIE2A           | TOIE2             | 157       |
| (0x70)                     | TIMSK2               | _                  | <del>-</del>       | ICIE1              |                        |                    | OCIE1B            | OCIE2A<br>OCIE1A | TOIE2             | 135       |
| (0x6F)                     | TIMSK1               | _                  |                    | ICIE I             | -                      | -                  | OCIETB            | OCIE1A<br>OCIE0A | TOIE1             | 107       |
| (0x6E)                     | PCMSK2               | PCINT23            | PCINT22            | PCINT21            | PCINT20                | PCINT19            | PCINT18           | PCINT17          | PCINT16           | 67        |
| (0x6D)                     | J                    | PCINT23<br>PCINT15 | PCINT22<br>PCINT14 | PCINT21<br>PCINT13 |                        |                    |                   |                  | PCINT16<br>PCINT8 |           |
| (0x6C)                     | PCMSK1<br>PCMSK0     | PCINT7             | PCINT14 PCINT6     | PCINT 13 PCINT5    | PCINT12<br>PCINT4      | PCINT11<br>PCINT3  | PCINT10<br>PCINT2 | PCINT9<br>PCINT1 | PCINT8            | 66<br>67  |
| (0x6B)                     |                      |                    |                    |                    |                        |                    |                   |                  |                   | 67        |
| (0x6A)                     | Reserved             | -                  | _                  | -                  | -                      | -                  | -                 | -                | -                 |           |
| (0x69)                     | EICRA                | -                  | _                  | _                  | -                      | -                  | -                 | ISC01            | ISC00             | 64        |
| (0x68)                     | Reserved             | -                  |                    | _                  | -                      | -                  | _                 | -                | _                 |           |
| (0x67)                     | Reserved             | -                  | -                  | -                  | -                      | -                  | -                 | -                | -                 |           |
| (0x66)                     | OSCCAL               |                    |                    | (                  | Oscillator Calibration | on Register [CAL7: | 0]                |                  |                   | 37        |
| (0x65)                     | Reserved             | -                  | -                  | _                  | -                      | _                  | _                 | -                |                   |           |
| (0x64)                     | PRR                  | -                  | -                  | -                  | -                      | PRTIM1             | PRSPI             | PSUSART0         | PRADC             | 45        |
| (0x63)                     | Reserved             | -                  | _                  | -                  | -                      | -                  | _                 | -                | _                 |           |
| (0x62)                     | Reserved             | -                  |                    | -                  | -                      | -                  | -                 | -                | _                 |           |
| (0x61)                     | CLKPR                | CLKPCE             | _                  | -                  | -                      | CLKPS3             | CLKPS2            | CLKPS1           | CLKPS0            | 37        |
| (0x60)                     | WDTCR                | -                  | _                  | _                  | WDCE                   | WDE                | WDP2              | WDP1             | WDP0              | 53        |
| 0x3F (0x5F)                | SREG                 | I                  | Т                  | Н                  | S                      | V                  | N                 | Z                | С                 | 12        |
| 0x3E (0x5E)                | SPH                  |                    |                    |                    |                        | inter High         |                   |                  |                   | 15        |
| 0x3D (0x5D)                | SPL                  |                    |                    |                    | Stack Po               | inter Low          |                   |                  |                   | 15        |
| 0x3C (0x5C)                | Reserved             | _                  | -                  | _                  | -                      | -                  | _                 | _                | _                 |           |
| 0x3B (0x5B)                | Reserved             | -                  | -                  | -                  | -                      | -                  | _                 | -                | -                 |           |
| 0x3A (0x5A)                | Reserved             | -                  | -                  | -                  | -                      | -                  | -                 | -                | -                 |           |
| 0x39 (0x59)                | Reserved             | -                  | -                  | -                  | -                      | -                  | -                 | -                | -                 |           |
| 0x38 (0x58)                | Reserved             | -                  | -                  | -                  | -                      | -                  | -                 | -                | -                 |           |
| 0x37 (0x57)                | SPMCSR               | SPMIE              | RWWSB              | -                  | RWWSRE                 | BLBSET             | PGWRT             | PGERS            | SPMEN             | 282       |
| 0x36 (0x56)                | Reserved             | -                  | -                  | -                  | -                      | _                  | -                 | _                | -                 |           |
| 0x35 (0x55)                | MCUCR                | JTD                | BODS               | BODSE              | PUD                    | -                  | -                 | IVSEL            | IVCE              | 61/90/266 |
| 0x34 (0x54)                | MCUSR                | -                  | -                  | -                  | JTRF                   | WDRF               | BORF              | EXTRF            | PORF              | 53        |
| 0x33 (0x53)                | SMCR                 | -                  | -                  | -                  | -                      | SM2                | SM1               | SM0              | SE                | 53        |
| 0x32 (0x52)                | Reserved             | -                  | -                  | -                  | -                      | -                  | -                 | _                | -                 |           |
| 0x31 (0x51)                | OCDR                 | IDRD/OCDR7         | OCDR6              | OCDR5              | OCDR4                  | OCDR3              | OCDR2             | OCDR1            | OCDR0             | 238       |
| 0x30 (0x50)                | ACSR                 | ACD                | ACBG               | ACO                | ACI                    | ACIE               | ACIC              | ACIS1            | ACIS0             | 212       |
| 0x2F (0x4F)                | Reserved             | -                  | -                  | -                  | -                      | -                  | -                 | _                | -                 |           |
| 0x2E (0x4E)                | SPDR                 |                    |                    |                    |                        | Register           |                   |                  |                   | 168       |
| 0x2D (0x4D)                | SPSR                 | SPIF               | WCOL               | -                  | -                      |                    | _                 | _                | SPI2X             | 167       |
| 0x2D (0x4D)                | SPCR                 | SPIE               | SPE                | DORD               | MSTR                   | CPOL               | СРНА              | SPR1             | SPR0              | 166       |
| 0x2B (0x4B)                | GPIOR2               |                    | <del>-</del>       |                    |                        | se I/O Register    |                   |                  |                   | 27        |
| 0x2A (0x4A)                | GPIOR1               |                    |                    |                    |                        | se I/O Register    |                   |                  |                   | 27        |
|                            | J                    |                    | _                  | _                  | –                      | –                  | _                 | _                | _                 |           |
| , ,                        | Reserved             |                    |                    |                    |                        |                    |                   |                  |                   | •         |
| 0x29 (0x49)<br>0x28 (0x48) | Reserved<br>Reserved | -                  |                    | -                  | -                      | _                  | _                 | _                | _                 |           |



## ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P

| Address     | Name     | Bit 7  | Bit 6  | Bit 5  | Bit 4         | Bit 3            | Bit 2  | Bit 1            | Bit 0    | Page    |
|-------------|----------|--------|--------|--------|---------------|------------------|--------|------------------|----------|---------|
| 0x26 (0x46) | TCNT0    |        |        |        | Timer/0       | Counter0         | '      |                  | •        | 107     |
| 0x25 (0x45) | Reserved | -      | -      | -      | _             | _                | -      | -                | _        |         |
| 0x24 (0x44) | TCCR0A   | FOC0A  | WGM00  | COM0A1 | COM0A0        | WGM01            | CS02   | CS01             | CS00     | 105     |
| 0x23 (0x43) | GTCCR    | TSM    | -      | -      | -             | -                | -      | PSR2             | PSR10    | 139/158 |
| 0x22 (0x42) | EEARH    | -      | -      | -      | -             | -                | EEPRO  | DM Address Regis | ter High | 26      |
| 0x21 (0x41) | EEARL    |        |        |        | EEPROM Addre  | ess Register Low |        |                  |          | 26      |
| 0x20 (0x40) | EEDR     |        |        |        | EEPROM D      | ata Register     |        |                  |          | 26      |
| 0x1F (0x3F) | EECR     | -      | -      | -      | _             | EERIE            | EEMWE  | EEWE             | EERE     | 27      |
| 0x1E (0x3E) | GPIOR0   |        |        |        | General Purpo | se I/O Register  |        |                  |          | 28      |
| 0x1D (0x3D) | EIMSK    | PCIE   | PCIE2  | PCIE1  | PCIE0         | _                | -      | -                | INT0     | 64      |
| 0x1C (0x3C) | EIFR     | PCIF3  | PCIF2  | PCIF1  | PCIF0         | _                | _      | _                | INTF0    | 65      |
| 0x1B (0x3B) | Reserved | -      | -      | -      | _             | _                | -      | -                | _        |         |
| 0x1A (0x3A) | Reserved | -      | -      | -      | -             | -                | -      | -                | -        |         |
| 0x19 (0x39) | Reserved | -      | -      | -      | -             | -                | -      | -                | -        |         |
| 0x18 (0x38) | Reserved | -      | -      | -      | _             | _                | -      | -                | _        |         |
| 0x17 (0x37) | TIFR2    | -      | -      | -      | -             | -                | -      | OCF2A            | TOV2     | 157     |
| 0x16 (0x36) | TIFR1    | -      | -      | ICF1   | -             | -                | OCF1B  | OCF1A            | TOV1     | 136     |
| 0x15 (0x35) | TIFR0    | -      | -      | -      | _             | _                | -      | OCF0A            | TOV0     | 139     |
| 0x14 (0x34) | PORTG    | -      | -      | -      | PORTG4        | PORTG3           | PORTG2 | PORTG1           | PORTG0   | 92      |
| 0x13 (0x33) | DDRG     | -      | -      | -      | DDG4          | DDG3             | DDG2   | DDG1             | DDG0     | 92      |
| 0x12 (0x32) | PING     | -      | -      | PING5  | PING4         | PING3            | PING2  | PING1            | PING0    | 92      |
| 0x11 (0x31) | PORTF    | PORTF7 | PORTF6 | PORTF5 | PORTF4        | PORTF3           | PORTF2 | PORTF1           | PORTF0   | 92      |
| 0x10 (0x30) | DDRF     | DDF7   | DDF6   | DDF5   | DDF4          | DDF3             | DDF2   | DDF1             | DDF0     | 92      |
| 0x0F (0x2F) | PINF     | PINF7  | PINF6  | PINF5  | PINF4         | PINF3            | PINF2  | PINF1            | PINF0    | 92      |
| 0x0E (0x2E) | PORTE    | PORTE7 | PORTE6 | PORTE5 | PORTE4        | PORTE3           | PORTE2 | PORTE1           | PORTE0   | 91      |
| 0x0D (0x2D) | DDRE     | DDE7   | DDE6   | DDE5   | DDE4          | DDE3             | DDE2   | DDE1             | DDE0     | 91      |
| 0x0C (0x2C) | PINE     | PINE7  | PINE6  | PINE5  | PINE4         | PINE3            | PINE2  | PINE1            | PINE0    | 92      |
| 0x0B (0x2B) | PORTD    | PORTD7 | PORTD6 | PORTD5 | PORTD4        | PORTD3           | PORTD2 | PORTD1           | PORTD0   | 91      |
| 0x0A (0x2A) | DDRD     | DDD7   | DDD6   | DDD5   | DDD4          | DDD3             | DDD2   | DDD1             | DDD0     | 91      |
| 0x09 (0x29) | PIND     | PIND7  | PIND6  | PIND5  | PIND4         | PIND3            | PIND2  | PIND1            | PIND0    | 91      |
| 0x08 (0x28) | PORTC    | PORTC7 | PORTC6 | PORTC5 | PORTC4        | PORTC3           | PORTC2 | PORTC1           | PORTC0   | 91      |
| 0x07 (0x27) | DDRC     | DDC7   | DDC6   | DDC5   | DDC4          | DDC3             | DDC2   | DDC1             | DDC0     | 91      |
| 0x06 (0x26) | PINC     | PINC7  | PINC6  | PINC5  | PINC4         | PINC3            | PINC2  | PINC1            | PINC0    | 91      |
| 0x05 (0x25) | PORTB    | PORTB7 | PORTB6 | PORTB5 | PORTB4        | PORTB3           | PORTB2 | PORTB1           | PORTB0   | 90      |
| 0x04 (0x24) | DDRB     | DDB7   | DDB6   | DDB5   | DDB4          | DDB3             | DDB2   | DDB1             | DDB0     | 90      |
| 0x03 (0x23) | PINB     | PINB7  | PINB6  | PINB5  | PINB4         | PINB3            | PINB2  | PINB1            | PINB0    | 90      |
| 0x02 (0x22) | PORTA    | PORTA7 | PORTA6 | PORTA5 | PORTA4        | PORTA3           | PORTA2 | PORTA1           | PORTA0   | 90      |
| 0x01 (0x21) | DDRA     | DDA7   | DDA6   | DDA5   | DDA4          | DDA3             | DDA2   | DDA1             | DDA0     | 90      |
| 0x00 (0x20) | PINA     | PINA7  | PINA6  | PINA5  | PINA4         | PINA3            | PINA2  | PINA1            | PINA0    | 90      |

Note:

- 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
- 2. I/O Registers within the address range 0x00 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.



# 7. Instruction Set Summary

| Mnemonics        | Operands                              | Description                                                | Operation                                                                                    | Flags        | #Clocks |
|------------------|---------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------|---------|
| ARITHMETIC AND L | OGIC INSTRUCTIONS                     | 3                                                          |                                                                                              |              |         |
| ADD              | Rd, Rr                                | Add two Registers                                          | Rd ← Rd + Rr                                                                                 | Z,C,N,V,H    | 1       |
| ADC              | Rd, Rr                                | Add with Carry two Registers                               | $Rd \leftarrow Rd + Rr + C$                                                                  | Z,C,N,V,H    | 1       |
| ADIW             | RdI,K                                 | Add Immediate to Word                                      | Rdh:Rdl ← Rdh:Rdl + K                                                                        | Z,C,N,V,S    | 2       |
| SUB              | Rd, Rr                                | Subtract two Registers                                     | Rd ← Rd - Rr                                                                                 | Z,C,N,V,H    | 1       |
| SUBI             | Rd, K                                 | Subtract Constant from Register                            | Rd ← Rd - K                                                                                  | Z,C,N,V,H    | 1       |
| SBC              | Rd, Rr                                | Subtract with Carry two Registers                          | $Rd \leftarrow Rd - Rr - C$                                                                  | Z,C,N,V,H    | 1       |
| SBCI             | Rd, K                                 | Subtract with Carry Constant from Reg.                     | Rd ← Rd - K - C                                                                              | Z,C,N,V,H    | 1       |
| SBIW             | RdI,K                                 | Subtract Immediate from Word                               | Rdh:Rdl ← Rdh:Rdl - K                                                                        | Z,C,N,V,S    | 2       |
| AND              | Rd, Rr                                | Logical AND Registers                                      | Rd ← Rd • Rr                                                                                 | Z,N,V        | 1       |
| ANDI             | Rd, K                                 | Logical AND Register and Constant                          | $Rd \leftarrow Rd \bullet K$                                                                 | Z,N,V        | 1       |
| OR               | Rd, Rr                                | Logical OR Registers                                       | $Rd \leftarrow Rd v Rr$                                                                      | Z,N,V        | 1       |
| ORI              | Rd, K                                 | Logical OR Register and Constant                           | $Rd \leftarrow Rd \vee K$                                                                    | Z,N,V        | 1       |
| EOR              | Rd, Rr                                | Exclusive OR Registers                                     | $Rd \leftarrow Rd \oplus Rr$                                                                 | Z,N,V        | 1       |
| COM              | Rd                                    | One's Complement                                           | $Rd \leftarrow 0xFF - Rd$                                                                    | Z,C,N,V      | 1       |
| NEG              | Rd                                    | Two's Complement                                           | Rd ← 0x00 − Rd                                                                               | Z,C,N,V,H    | 1       |
| SBR              | Rd,K                                  | Set Bit(s) in Register                                     | Rd ← Rd v K                                                                                  | Z,N,V        | 1       |
| CBR              | Rd,K                                  | Clear Bit(s) in Register                                   | $Rd \leftarrow Rd \bullet (0xFF - K)$                                                        | Z,N,V        | 1       |
| INC              | Rd                                    | Increment                                                  | Rd ← Rd + 1                                                                                  | Z,N,V        | 1       |
| DEC              | Rd                                    | Decrement                                                  | Rd ← Rd − 1                                                                                  | Z,N,V        | 1       |
| TST              | Rd                                    | Test for Zero or Minus                                     | Rd ← Rd • Rd                                                                                 | Z,N,V        | 1       |
| CLR              | Rd                                    | Clear Register                                             | Rd ← Rd ⊕ Rd                                                                                 | Z,N,V        | 1       |
| SER              | Rd                                    | Set Register                                               | Rd ← 0xFF                                                                                    | None         | 1       |
| MUL              | Rd, Rr                                | Multiply Unsigned                                          | R1:R0 ← Rd x Rr                                                                              | Z,C          | 2       |
| MULS<br>MULSU    | Rd, Rr<br>Rd, Rr                      | Multiply Signed                                            | R1:R0 $\leftarrow$ Rd x Rr<br>R1:R0 $\leftarrow$ Rd x Rr                                     | Z,C<br>Z,C   | 2       |
| FMUL             | Rd, Rr                                | Multiply Signed with Unsigned Fractional Multiply Unsigned | R1:R0 ← (Rd x Rr) << 1                                                                       | Z,C          | 2       |
| FMULS            | Rd, Rr                                | Fractional Multiply Signed                                 | R1:R0 ¬ (Rd x Rr) << 1                                                                       | Z,C          | 2       |
| FMULSU           | Rd, Rr                                | Fractional Multiply Signed with Unsigned                   | R1:R0 ¬ (Rd x Rr) << 1                                                                       | Z,C          | 2       |
| BRANCH INSTRUCT  | · · · · · · · · · · · · · · · · · · · | Traditional Manaphy Digited With Orloighted                | THE CHANTED SET                                                                              | 2,0          |         |
| RJMP             | k                                     | Relative Jump                                              | PC ← PC + k + 1                                                                              | None         | 2       |
| IJMP             |                                       | Indirect Jump to (Z)                                       | PC ← Z                                                                                       | None         | 2       |
| JMP              | k                                     | Direct Jump                                                | PC ← k                                                                                       | None         | 3       |
| RCALL            | k                                     | Relative Subroutine Call                                   | PC ← PC + k + 1                                                                              | None         | 3       |
| ICALL            |                                       | Indirect Call to (Z)                                       | PC ← Z                                                                                       | None         | 3       |
| CALL             | k                                     | Direct Subroutine Call                                     | PC ← k                                                                                       | None         | 4       |
| RET              |                                       | Subroutine Return                                          | PC ← STACK                                                                                   | None         | 4       |
| RETI             |                                       | Interrupt Return                                           | PC ← STACK                                                                                   | 1            | 4       |
| CPSE             | Rd,Rr                                 | Compare, Skip if Equal                                     | if (Rd = Rr) PC ← PC + 2 or 3                                                                | None         | 1/2/3   |
| СР               | Rd,Rr                                 | Compare                                                    | Rd – Rr                                                                                      | Z, N,V,C,H   | 1       |
| CPC              | Rd,Rr                                 | Compare with Carry                                         | Rd – Rr – C                                                                                  | Z, N,V,C,H   | 1       |
| CPI              | Rd,K                                  | Compare Register with Immediate                            | Rd – K                                                                                       | Z, N,V,C,H   | 1       |
| SBRC             | Rr, b                                 | Skip if Bit in Register Cleared                            | if (Rr(b)=0) PC ← PC + 2 or 3                                                                | None         | 1/2/3   |
| SBRS             | Rr, b                                 | Skip if Bit in Register is Set                             | if (Rr(b)=1) PC ← PC + 2 or 3                                                                | None         | 1/2/3   |
| SBIC             | P, b                                  | Skip if Bit in I/O Register Cleared                        | if (P(b)=0) PC ← PC + 2 or 3                                                                 | None         | 1/2/3   |
| SBIS             | P, b                                  | Skip if Bit in I/O Register is Set                         | if (P(b)=1) PC ← PC + 2 or 3                                                                 | None         | 1/2/3   |
| BRBS             | s, k                                  | Branch if Status Flag Set                                  | if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$                                           | None         | 1/2     |
| BRBC             | s, k                                  | Branch if Status Flag Cleared                              | if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$                                           | None         | 1/2     |
| BREQ             | k                                     | Branch if Equal                                            | if (Z = 1) then PC ← PC + k + 1                                                              | None         | 1/2     |
| BRNE             | k                                     | Branch if Not Equal                                        | if (Z = 0) then PC ← PC + k + 1                                                              | None         | 1/2     |
| BRCS             | k                                     | Branch if Carry Set                                        | if (C = 1) then PC ← PC + k + 1                                                              | None         | 1/2     |
| BRCC             | k                                     | Branch if Carry Cleared                                    | if (C = 0) then PC ← PC + k + 1                                                              | None         | 1/2     |
| BRSH             | k                                     | Branch if Same or Higher                                   | if (C = 0) then PC ← PC + k + 1                                                              | None         | 1/2     |
| BRLO             | k                                     | Branch if Lower                                            | if (C = 1) then PC ← PC + k + 1                                                              | None         | 1/2     |
| BRMI             | k                                     | Branch if Minus                                            | if (N = 1) then PC ← PC + k + 1                                                              | None         | 1/2     |
| BRPL             | k                                     | Branch if Plus                                             | if (N = 0) then PC ← PC + k + 1                                                              | None         | 1/2     |
| BRGE             | k                                     | Branch if Greater or Equal, Signed                         | if (N ⊕ V= 0) then PC ← PC + k + 1                                                           | None         | 1/2     |
| BRLT             | k                                     | Branch if Less Than Zero, Signed                           | if (N ⊕ V= 1) then PC ← PC + k + 1                                                           | None         | 1/2     |
| BRHS             | k                                     | Branch if Half Carry Flag Set                              | if (H = 1) then PC ← PC + k + 1                                                              | None         | 1/2     |
| BRHC             | k                                     | Branch if Half Carry Flag Cleared                          | if (H = 0) then PC ← PC + k + 1                                                              | None         | 1/2     |
| BRTS             | k                                     | Branch if T Flag Set                                       | if (T = 1) then PC ← PC + k + 1                                                              | None         | 1/2     |
| DDTO             |                                       |                                                            |                                                                                              |              |         |
| BRTC<br>BRVS     | k                                     | Branch if T Flag Cleared  Branch if Overflow Flag is Set   | if $(T = 0)$ then $PC \leftarrow PC + k + 1$<br>if $(V = 1)$ then $PC \leftarrow PC + k + 1$ | None<br>None | 1/2     |



## ■ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P

| Mnemonics        | Operands         | Description                                               | Operation                                                                          | Flags        | #Clocks |
|------------------|------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------|--------------|---------|
| BRVC             | k                | Branch if Overflow Flag is Cleared                        | if $(V = 0)$ then $PC \leftarrow PC + k + 1$                                       | None         | 1/2     |
| BRIE             | k                | Branch if Interrupt Enabled                               | if (I = 1) then PC $\leftarrow$ PC + k + 1                                         | None         | 1/2     |
| BRID             | k                | Branch if Interrupt Disabled                              | if ( I = 0) then PC ← PC + k + 1                                                   | None         | 1/2     |
| BIT AND BIT-TEST | INSTRUCTIONS     |                                                           |                                                                                    |              |         |
| SBI              | P,b              | Set Bit in I/O Register                                   | I/O(P,b) ← 1                                                                       | None         | 2       |
| CBI              | P,b              | Clear Bit in I/O Register                                 | I/O(P,b) ← 0                                                                       | None         | 2       |
| LSL              | Rd               | Logical Shift Left                                        | $Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$                                     | Z,C,N,V      | 1       |
| LSR              | Rd               | Logical Shift Right                                       | $Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$                                     | Z,C,N,V      | 1       |
| ROL              | Rd               | Rotate Left Through Carry                                 | $Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$                      | Z,C,N,V      | 1       |
| ROR              | Rd               | Rotate Right Through Carry                                | $Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$                      | Z,C,N,V      | 1       |
| ASR              | Rd               | Arithmetic Shift Right                                    | $Rd(n) \leftarrow Rd(n+1), n=06$                                                   | Z,C,N,V      | 1       |
| SWAP             | Rd               | Swap Nibbles                                              | $Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$                               | None         | 1       |
| BSET             | S                | Flag Set                                                  | SREG(s) ← 1                                                                        | SREG(s)      | 1       |
| BCLR             | S                | Flag Clear                                                | $SREG(s) \leftarrow 0$                                                             | SREG(s)      | 1       |
| BST              | Rr, b            | Bit Store from Register to T                              | $T \leftarrow Rr(b)$                                                               | Т            | 1       |
| BLD              | Rd, b            | Bit load from T to Register                               | $Rd(b) \leftarrow T$                                                               | None         | 1       |
| SEC              |                  | Set Carry                                                 | C ← 1                                                                              | С            | 1       |
| CLC              |                  | Clear Carry                                               | C ← 0                                                                              | С            | 1       |
| SEN              |                  | Set Negative Flag                                         | N ← 1                                                                              | N            | 1       |
| CLN              |                  | Clear Negative Flag                                       | N ← 0                                                                              | N            | 1       |
| SEZ              |                  | Set Zero Flag                                             | Z←1                                                                                | Z            | 1       |
| CLZ              |                  | Clear Zero Flag                                           | Z ← 0                                                                              | Z            | 1       |
| SEI              |                  | Global Interrupt Enable                                   | I ← 1                                                                              | 1            | 1       |
| CLI              |                  | Global Interrupt Disable                                  | 1 ← 0                                                                              | I            | 1       |
| SES              |                  | Set Signed Test Flag                                      | S ← 1                                                                              | S            | 1       |
| CLS              |                  | Clear Signed Test Flag                                    | S ← 0                                                                              | S            | 1       |
| SEV              |                  | Set Twos Complement Overflow.                             | V ← 1                                                                              | V            | 1       |
| CLV              |                  | Clear Twos Complement Overflow                            | V ← 0                                                                              | V            | 1       |
| SET              |                  | Set T in SREG                                             | T ← 1                                                                              | Т            | 1       |
| CLT              |                  | Clear T in SREG                                           | T ← 0                                                                              | T            | 1       |
| SEH              |                  | Set Half Carry Flag in SREG                               | H ← 1                                                                              | H            | 1       |
| CLH              |                  | Clear Half Carry Flag in SREG                             | H ← 0                                                                              | Н            | 1       |
| DATA TRANSFER II |                  | T., 2. 2                                                  | Т                                                                                  | F.,          | 1 .     |
| MOV              | Rd, Rr           | Move Between Registers                                    | Rd ← Rr                                                                            | None         | 1       |
| MOVW             | Rd, Rr           | Copy Register Word                                        | Rd+1:Rd ← Rr+1:Rr                                                                  | None         | 1       |
| LDI              | Rd, K            | Load Immediate                                            | Rd ← K                                                                             | None         | 1       |
| LD               | Rd, X            | Load Indirect                                             | Rd ← (X)                                                                           | None         | 2       |
| LD               | Rd, X+           | Load Indirect and Post-Inc.                               | $Rd \leftarrow (X), X \leftarrow X + 1$                                            | None         | 2       |
| LD               | Rd, - X          | Load Indirect and Pre-Dec.                                | $X \leftarrow X - 1$ , $Rd \leftarrow (X)$                                         | None         | 2       |
| LD               | Rd, Y            | Load Indirect                                             | $Rd \leftarrow (Y)$                                                                | None         | 2       |
| LD               | Rd, Y+           | Load Indirect and Post-Inc.                               | $Rd \leftarrow (Y), Y \leftarrow Y + 1$                                            | None         | 2       |
| LD               | Rd, - Y          | Load Indirect and Pre-Dec.                                | $Y \leftarrow Y - 1$ , $Rd \leftarrow (Y)$                                         | None         | 2       |
| LDD              | Rd,Y+q           | Load Indirect with Displacement                           | $Rd \leftarrow (Y + q)$                                                            | None         | 2       |
| LD               | Rd, Z            | Load Indirect                                             | $Rd \leftarrow (Z)$                                                                | None         | 2       |
| LD               | Rd, Z+           | Load Indirect and Post-Inc.                               | $Rd \leftarrow (Z), Z \leftarrow Z+1$                                              | None         | 2       |
| LD               | Rd, -Z           | Load Indirect with Displacement                           | $Z \leftarrow Z - 1$ , $Rd \leftarrow (Z)$                                         | None         | 2       |
| LDD<br>LDS       | Rd, Z+q          | Load Indirect with Displacement  Load Direct from SRAM    | $Rd \leftarrow (Z + q)$                                                            | None         | 2       |
| ST               | Rd, k<br>X, Rr   | Store Indirect                                            | $Rd \leftarrow (k)$ $(X) \leftarrow Rr$                                            | None<br>None | 2       |
|                  |                  |                                                           | <u> </u>                                                                           |              |         |
| ST<br>ST         | X+, Rr           | Store Indirect and Post-Inc. Store Indirect and Pre-Dec.  | $(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$                             | None         | 2       |
| ST               | - X, Rr<br>Y, Rr | Store Indirect and Pre-Dec. Store Indirect                | $X \leftarrow X - 1, (X) \leftarrow Rr$<br>$(Y) \leftarrow Rr$                     | None<br>None | 2       |
|                  |                  |                                                           | <u> </u>                                                                           |              |         |
| ST<br>ST         | Y+, Rr           | Store Indirect and Pro Doc                                | $(Y) \leftarrow Rr, Y \leftarrow Y + 1$                                            | None         | 2       |
| STD              | - Y, Rr          | Store Indirect with Displacement                          | $Y \leftarrow Y - 1, (Y) \leftarrow Rr$                                            | None         | 2       |
|                  | Y+q,Rr           | Store Indirect with Displacement Store Indirect           | (Y + q) ← Rr                                                                       | None         | 2       |
| ST<br>ST         | Z, Rr<br>Z+, Rr  | Store Indirect Store Indirect and Post-Inc.               | (Z) ← Rr                                                                           | None         | 2       |
| ST               | -Z, Rr           | Store Indirect and Post-Inc.  Store Indirect and Pre-Dec. | $(Z) \leftarrow Rr, Z \leftarrow Z + 1$<br>$Z \leftarrow Z - 1, (Z) \leftarrow Rr$ | None<br>None | 2       |
|                  |                  |                                                           |                                                                                    |              | 2       |
| STD              | Z+q,Rr           | Store Indirect with Displacement                          | (Z + q) ← Rr                                                                       | None         | 2       |
| STS              | k, Rr            | Store Direct to SRAM                                      | (k) ← Rr                                                                           | None         |         |
| LPM              | Dd 7             | Load Program Memory                                       | R0 ← (Z)                                                                           | None         | 3       |
| LPM              | Rd, Z            | Load Program Memory                                       | Rd ← (Z)                                                                           | None         | 3       |
| LPM              | Rd, Z+           | Load Program Memory and Post-Inc                          | $Rd \leftarrow (Z), Z \leftarrow Z+1$                                              | None         | 3       |
| SPM              | D4 D             | Store Program Memory                                      | (Z) ← R1:R0                                                                        | None         | -       |
| IN               | Rd, P            | In Port                                                   | Rd ← P                                                                             | None         | 1       |
| OUT              | P, Rr            | Out Port                                                  | P ← Rr                                                                             | None         | 1       |



## ■ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P

| Mnemonics       | Operands  | Description             | Operation                                | Flags | #Clocks |
|-----------------|-----------|-------------------------|------------------------------------------|-------|---------|
| PUSH            | Rr        | Push Register on Stack  | STACK ← Rr                               | None  | 2       |
| POP             | Rd        | Pop Register from Stack | Rd ← STACK                               | None  | 2       |
| MCU CONTROL INS | TRUCTIONS |                         |                                          |       |         |
| NOP             |           | No Operation            |                                          | None  | 1       |
| SLEEP           |           | Sleep                   | (see specific descr. for Sleep function) | None  | 1       |
| WDR             |           | Watchdog Reset          | (see specific descr. for WDR/timer)      | None  | 1       |
| BREAK           |           | Break                   | For On-chip Debug Only                   | None  | N/A     |



## **Ordering Information**

#### ATmega165A 8.1

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>                                                                                                          | Package <sup>(1)</sup>                     | Operation Range                          |
|----------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|
| 16                         | 1.8 - 5.5V   | ATmega165A-AU ATmega165A-AUR <sup>(4)</sup> ATmega165A-MU ATmega165A-MUR <sup>(4)</sup> ATmega165A-MCH ATmega165A-MCHR <sup>(4)</sup> | 64A<br>64A<br>64M1<br>64M1<br>64MC<br>64MC | Industrial<br>(-40°C to 85°C)            |
|                            |              | ATmega165A-AN<br>ATmega165A-ANR <sup>(4)</sup><br>ATmega165A-MN<br>ATmega165A-MNR <sup>(4)</sup>                                      | 64A<br>64A<br>64M1<br>64M1                 | Extended (-40°C to 105°C) <sup>(5)</sup> |

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
  - 3. For Speed vs.  $V_{CC}$ , see Figure 27-1 on page 324.
  - 4. Tape & Reel
  - 5. See Appendix A ATmega165A/165PA/325P/3250P specification at 105°C

|             | Package Type                                                                                              |
|-------------|-----------------------------------------------------------------------------------------------------------|
| 64 <b>A</b> | 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)                                         |
| 64M1        | 64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)     |
| 64MC        | 64-lead (2-row Staggered), 7 x 7 x 1.0 mm body, 4.0 x 4.0 mm Exposed Pad, Quad Flat No-Lead Package (QFN) |



#### ATmega165PA 8.2

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>                                                                                                                | Package <sup>(1)</sup>                     | Operation Range                          |
|----------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------|
| 16                         | 1.8 - 5.5V   | ATmega165PA-AU ATmega165PA-AUR <sup>(4)</sup> ATmega165PA-MU ATmega165PA-MUR <sup>(4)</sup> ATmega165PA-MCH ATmega165PA-MCHR <sup>(4)</sup> | 64A<br>64A<br>64M1<br>64M1<br>64MC<br>64MC | Industrial<br>(-40°C to 85°C)            |
|                            |              | ATmega165PA-AN<br>ATmega165PA-ANR <sup>(4)</sup><br>ATmega165PA-MN<br>ATmega165PA-MNR <sup>(4)</sup>                                        | 64A<br>64A<br>64M1<br>64M1                 | Extended (-40°C to 105°C) <sup>(5)</sup> |

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
  - 3. For Speed vs. V<sub>CC</sub>, see Figure 27-1 on page 324.
  - 4. Tape & Reel.
  - 5. See Appendix A ATmega165A/165PA/325P/3250P specification at 105°C.

|             | Package Type                                                                                              |
|-------------|-----------------------------------------------------------------------------------------------------------|
| 64 <b>A</b> | 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)                                         |
| 64M1        | 64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)     |
| 64MC        | 64-lead (2-row Staggered), 7 x 7 x 1.0 mm body, 4.0 x 4.0 mm Exposed Pad, Quad Flat No-Lead Package (QFN) |



#### ATmega325A 8.3

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>                                                                     | Package <sup>(1)</sup>     | Operation Range               |
|----------------------------|--------------|--------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|
| 20                         | 1.8 - 5.5V   | ATmega325A-AU<br>ATmega325A-AUR <sup>(4)</sup><br>ATmega325A-MU<br>ATmega325A-MUR <sup>(4)</sup> | 64A<br>64A<br>64M1<br>64M1 | Industrial<br>(-40°C to 85°C) |

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
  - 3. For Speed vs.  $V_{CC}$ , see Figure 27-1 on page 325.
  - 4. Tape & Reel

|      | Package Type                                                                                          |
|------|-------------------------------------------------------------------------------------------------------|
| 64A  | 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)                                     |
| 64M1 | 64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |



#### ATmega325PA 8.4

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>                                                                         | Package <sup>(1)</sup>     | Operation Range               |
|----------------------------|--------------|------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|
| 20                         | 2.7 - 5.5V   | ATmega325PA-AU<br>ATmega325PA-AUR <sup>(4)</sup><br>ATmega325PA-MU<br>ATmega325PA-MUR <sup>(4)</sup> | 64A<br>64A<br>64M1<br>64M1 | Industrial<br>(-40°C to 85°C) |

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
  - 3. For Speed vs.  $V_{CC}$ , see Figure 27-1 on page 325.
  - 4. Tape & Reel

|      | Package Type |                                                                                                       |  |
|------|--------------|-------------------------------------------------------------------------------------------------------|--|
| 64A  |              | 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)                                     |  |
| 64M1 |              | 64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |  |



#### ATmega3250A 8.5

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>                     | Package <sup>(1)</sup> | Operation Range               |
|----------------------------|--------------|--------------------------------------------------|------------------------|-------------------------------|
| 20                         | 2.7 - 5.5V   | ATmega3250A-AU<br>ATmega3250A-AUR <sup>(4)</sup> | 100A<br>100A           | Industrial<br>(-40°C to 85°C) |

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
  - 3. For Speed vs.  $V_{CC}$ , see Figure 27-1 on page 325.
  - 4. Tape & Reel

|      | Package Type                                                                                 |
|------|----------------------------------------------------------------------------------------------|
| 100A | 100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) |



## 8.6 ATmega3250PA

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>                       | Package <sup>(1)</sup> | Operation Range               |
|----------------------------|--------------|----------------------------------------------------|------------------------|-------------------------------|
| 20                         | 2.7 - 5.5V   | ATmega3250PA-AU<br>ATmega3250PA-AUR <sup>(4)</sup> | 100A<br>100A           | Industrial<br>(-40°C to 85°C) |

Notes:

- 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
- 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
- 3. For Speed vs.  $V_{CC}$ , see Figure 27-1 on page 325.
- 4. Tape & Reel

|      | Package Type                                                                                 |
|------|----------------------------------------------------------------------------------------------|
| 100A | 100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) |



#### ATmega645A 8.7

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>                                                                     | Package <sup>(1)</sup>     | Operation Range               |
|----------------------------|--------------|--------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|
| 16                         | 1.8 - 5.5V   | ATmega645A-AU<br>ATmega645A-AUR <sup>(4)</sup><br>ATmega645A-MU<br>ATmega645A-MUR <sup>(4)</sup> | 64A<br>64A<br>64M1<br>64M1 | Industrial<br>(-40°C to 85°C) |

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
  - 3. For Speed vs.  $V_{CC}$ , see Figure 27-1 on page 325.
  - 4. Tape & Reel

|      | Package Type                                                                                          |
|------|-------------------------------------------------------------------------------------------------------|
| 64A  | 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)                                     |
| 64M1 | 64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |



#### ATmega645P 8.8

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>                                                                     | Package <sup>(1)</sup>     | Operation Range               |
|----------------------------|--------------|--------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|
| 16                         | 1.8 - 5.5V   | ATmega645P-AU<br>ATmega645P-AUR <sup>(4)</sup><br>ATmega645P-MU<br>ATmega645P-MUR <sup>(4)</sup> | 64A<br>64A<br>64M1<br>64M1 | Industrial<br>(-40°C to 85°C) |

- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
  - 3. For Speed vs.  $V_{CC}$ , see Figure 27-1 on page 325.
  - 4. Tape & Reel

|      | Package Type                                                                                          |  |  |
|------|-------------------------------------------------------------------------------------------------------|--|--|
| 64A  | 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)                                     |  |  |
| 64M1 | 64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) |  |  |



#### ATmega6450A 8.9

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>                     | Package <sup>(1)</sup> | Operation Range               |
|----------------------------|--------------|--------------------------------------------------|------------------------|-------------------------------|
| 20                         | 1.8 - 5.5V   | ATmega6450A-AU<br>ATmega6450A-AUR <sup>(4)</sup> | 100A<br>100A           | Industrial<br>(-40°C to 85°C) |

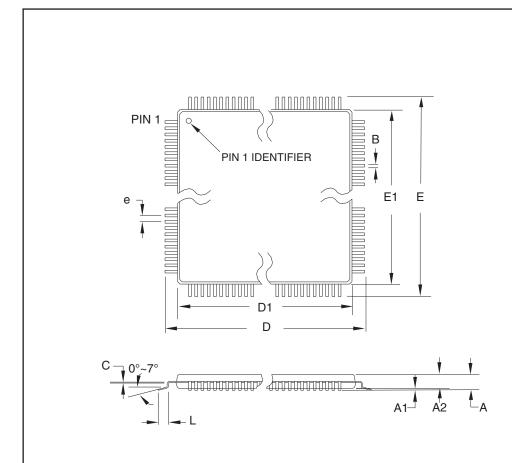
- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
  - 3. For Speed vs.  $V_{CC}$ , see Figure 27-1 on page 325.
  - 4. Tape & Reel

| Package Type |                                                                                              |  |
|--------------|----------------------------------------------------------------------------------------------|--|
| 100A         | 100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) |  |



#### ATmega6450P 8.10

| Speed (MHz) <sup>(3)</sup> | Power Supply | Ordering Code <sup>(2)</sup>                     | Package <sup>(1)</sup> | Operation Range               |
|----------------------------|--------------|--------------------------------------------------|------------------------|-------------------------------|
| 20                         | 1.8 - 5.5V   | ATmega6450P-AU<br>ATmega6450P-AUR <sup>(4)</sup> | 100A<br>100A           | Industrial<br>(-40°C to 85°C) |


- Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
  - 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.
  - 3. For Speed vs.  $V_{CC}$ , see Figure 27-1 on page 325.
  - 4. Tape & Reel

| Package Type |                                                                                              |  |
|--------------|----------------------------------------------------------------------------------------------|--|
| 100A         | 100-lead, 14 x 14 x 1.0 mm, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) |  |



## 9. Packaging Information

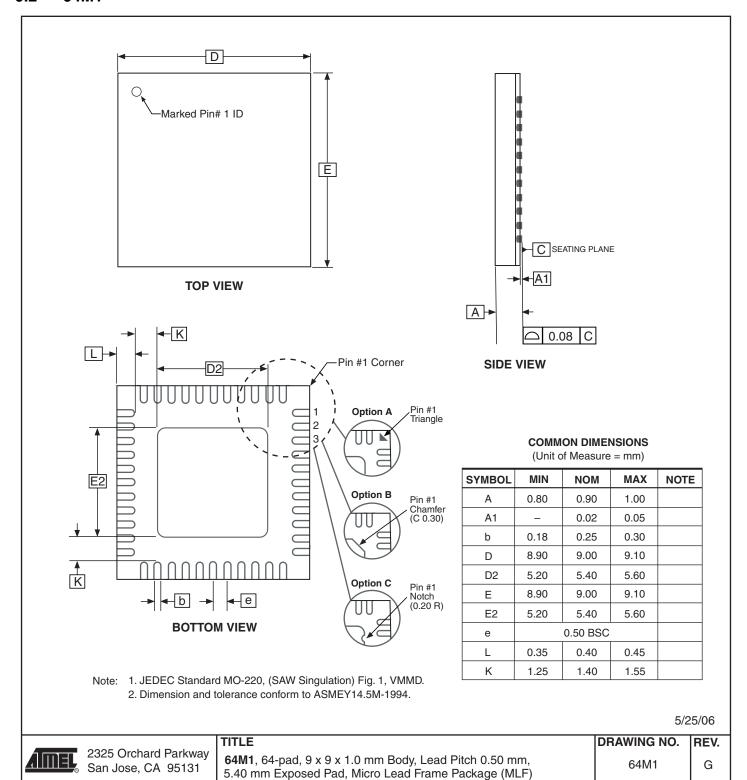
## 9.1 64A



# **COMMON DIMENSIONS** (Unit of Measure = mm)

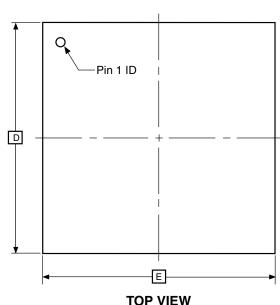
#### MIN SYMBOL NOM MAX NOTE Α 1.20 Α1 0.05 0.15 A2 0.95 1.00 1.05 D 15.75 16.00 16.25 D1 13.90 14.00 14.10 Note 2 Е 15.75 16.00 16.25 E1 13.90 14.00 14.10 Note 2 В 0.30 0.45 С 0.09 0.20 L 0.45 0.75 0.80 TYP е

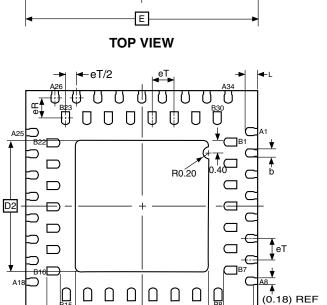
### Notes:


- 1. This package conforms to JEDEC reference MS-026, Variation AEB.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.10 mm maximum.

10/5/2001

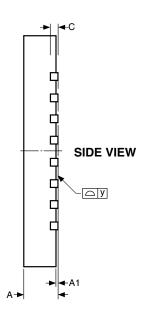
| 2005 Onels and Dankers                     | TITLE                                                                                                                               | DRAWING NO. | REV. |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------|------|
| 2325 Orchard Parkway<br>San Jose, CA 95131 | <b>64A</b> , 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) | 64A         | В    |





## 9.2 64M1






## 9.3 64MC





Note: 1. The terminal #1 ID is a Laser-marked Feature.

**BOTTOM VIEW** 



# **COMMON DIMENSIONS** (Unit of Measure = mm)

| SYMBOL | MIN  | NOM      | MAX   | NOTE  |
|--------|------|----------|-------|-------|
| Α      | 0.80 | 0.90     | 1.00  |       |
| A1     | 0.00 | 0.02     | 0.05  |       |
| b      | 0.18 | 0.23     | 0.28  |       |
| С      |      | 0.20 REF |       |       |
| D      | 6.90 | 7.00     | 7.10  |       |
| D2     | 3.95 | 4.00     | 4.05  |       |
| Е      | 6.90 | 7.00     | 7.10  |       |
| E2     | 3.95 | 4.00     | 4.05  |       |
| eT     | _    | 0.65     | 1     |       |
| eR     | _    | 0.65     | 1     |       |
| K      | 0.20 | _        | Ī     | (REF) |
| L      | 0.35 | 0.40     | 0.45  |       |
| у      | 0.00 | _        | 0.075 |       |

10/3/07

REV.



Package Drawing Contact: packagedrawings@atmel.com

**TITLE 64MC**, 64QFN (2-Row Staggered),
7 x 7 x 1.00 mm Body, 4.0 x 4.0 mm Exposed Pad,
Quad Flat No Lead Package

GPC Pad, ZXC DRAWING NO. 64MC

А



**←** (0.1) REF

## 9.4 100A



## **COMMON DIMENSIONS**

(Unit of Measure = mm)

|        | ,     |          |       |        |
|--------|-------|----------|-------|--------|
| SYMBOL | MIN   | NOM      | MAX   | NOTE   |
| Α      | _     | _        | 1.20  |        |
| A1     | 0.05  | _        | 0.15  |        |
| A2     | 0.95  | 1.00     | 1.05  |        |
| D      | 15.75 | 16.00    | 16.25 |        |
| D1     | 13.90 | 14.00    | 14.10 | Note 2 |
| Е      | 15.75 | 16.00    | 16.25 |        |
| E1     | 13.90 | 14.00    | 14.10 | Note 2 |
| В      | 0.17  | _        | 0.27  |        |
| С      | 0.09  | _        | 0.20  |        |
| L      | 0.45  | _        | 0.75  |        |
| е      |       | 0.50 TYP |       |        |

Notes:

- 1. This package conforms to JEDEC reference MS-026, Variation AED.
- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
- 3. Lead coplanarity is 0.08 mm maximum.

10/5/2001



2325 Orchard Parkway San Jose, CA 95131 TITLE

**100A**, 100-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness, 0.5 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)

| DRAWING NO. | REV. |
|-------------|------|
| 100A        | С    |



## 10. Errata

- 10.1 ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P Rev. G

  No known errata.
- 10.2 ATmega165A/165PA/325A/325PA/3250A/3250PA/645A/645P/6450A/6450P Rev. A to F Not sampled.



# 11. Datasheet Revision History

Please note that the referring page numbers in this section are referring to this document. The referring revisions in this section are referring to the document revision.

## 11.1 8289A - 09/10

- 1. Initial revision (Based on the ATmega165P/325P/3250P/645/6450/V).
- 2. Changes done compared to ATmega165P/325P/3250P/645/6450/V datasheet:
  - New EIMSK and EIFR register overview
  - New graphics in "Typical Characteristics" on page 343.
  - Ordering Information includes Tape & Reel
  - New "Ordering Information" on page 379.
  - QTouch Library Support Features





### Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

### International

Atmel Asia

Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong

Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-

Yvelines Cedex France

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033

Japan Tal: (91) 2 25

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

#### **Product Contact**

Web Site

www.atmel.com

**Technical Support** 

avr@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2010 Atmel Corporation. All rights reserved. Atmel<sup>®</sup>, Atmel logo and combinations thereof, AVR<sup>®</sup>, AVR<sup>®</sup> logo, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.