8-bit AVR Microcontroller with 8K Bytes In-System Programmable Flash

DATASHEET SUMMARY

Features

- High Performance, Low Power Atmel ${ }^{\circledR}$ AVR $^{\circledR}$ 8-bit Microcontroller
- Advanced RISC Architecture
- 123 Powerful Instructions - Most Single Clock Cycle Execution
- 32×8 General Purpose Working Registers
- Fully Static Operation
- Up to 20 MIPS Throughput at 20 MHz
- Non-volatile Program and Data Memories
- 8K Bytes of In-System Programmable Flash Program Memory
- Endurance: 10,000 Write/Erase Cycles
- 256 Bytes of In-System Programmable EEPROM
- Endurance: 100,000 Write/Erase Cycles
- 512 Bytes Internal SRAM
- Optional Boot Code Section with Independent Lock Bits
- Data Retention: 20 Years at $85^{\circ} \mathrm{C} / 100$ Years at $25^{\circ} \mathrm{C}$
- Peripheral Features
- One 8-bit and one 16-bit Timer/Counter with Two PWM Channels, Each
- Programmable Ultra Low Power Watchdog Timer
- On-chip Analog Comparator
- 10-bit Analog to Digital Converter
- 28 External and 4 Internal, Single-ended Input Channels
- Full Duplex USART with Start Frame Detection
- Master/Slave SPI Serial Interface
- Slave $I^{2} C$ Serial Interface
- Special Microcontroller Features
- Low Power Idle, ADC Noise Reduction, and Power-down Modes
- Enhanced Power-on Reset Circuit
- Programmable Brown-out Detection Circuit with Supply Voltage Sampling
- External and Internal Interrupt Sources
- Pin Change Interrupt on 28 Pins
- Calibrated 8 MHz Oscillator with Temperature Calibration Option
- Calibrated 32 kHz Ultra Low Power Oscillator
- High-Current Drive Capability on 8 I/O Pins
- I/O and Packages
- 32-lead TQFP, and 32-pad QFN/MLF: 28 Programmable I/O Lines
- Speed Grade
- 0-2 MHz @ $1.7-1.8 \mathrm{~V}$
- 0-4 MHz @ 1.8-5.5V
- 0-10 MHz @ $2.7-5.5 \mathrm{~V}$
- $0-20 \mathrm{MHz} @ 4.5-5.5 \mathrm{~V}$

- Low Power Consumption

- Active Mode: 0.2 mA at 1.8 V and 1 MHz
- Idle Mode: $30 \mu \mathrm{~A}$ at 1.8 V and 1 MHz
- Power-Down Mode (WDT Enabled): $1 \mu \mathrm{~A}$ at 1.8 V
- Power-Down Mode (WDT Disabled): 100 nA at 1.8 V

1. Pin Configurations

Figure 1. ATtiny828 Pinout in MLF32.

Figure 2. ATtiny828 Pinout in TQFP32.

1.1 Pin Description

1.1.1 VCC

Supply voltage.

1.1.2 AVCC

$A V_{C C}$ is the supply voltage pin for the A / D converter and a selection of I/O pins. This pin should be externally connected to $V_{C C}$ even if the ADC is not used. If the ADC is used, it is recommended this pin is connected to $V_{c c}$ through a low-pass filter, as described in "Noise Canceling Techniques" on page 145.
All pins of Port A and Port B are powered by $A V_{C C}$. All other I/O pins take their supply voltage from $V_{C C}$.

1.1.3 GND

Ground.

1.1.4 RESET

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running and provided the reset pin has not been disabled. The minimum pulse length is given in Table 107 on page 250. Shorter pulses are not guaranteed to generate a reset.
The reset pin can also be used as a (weak) I/O pin.

1.1.5 Port A (PA7:PAO)

This is an 8-bit, bi-directional I/O port with internal pull-up resistors (selected for each bit). Output buffers have high sink and standard source capability. See Table 107 on page 250 for port drive strength.

As inputs, port pins that are externally pulled low will source current provided that pull-up resistors are activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running.
This port has alternative pin functions for pin change interrupts, the analog comparator, and ADC. See "Alternative Port Functions" on page 63.

1.1.6 Port B (PB7:PB0)

This is an 8-bit, bi-directional I/O port with internal pull-up resistors (selected for each bit). Output buffers have high sink and standard source capability. See Table 103 on page 247 for port drive strength.

As inputs, port pins that are externally pulled low will source current provided that pull-up resistors are activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running.

This port has alternative pin functions for pin change interrupts, and ADC. See "Alternative Port Functions" on page 63.

1.1.7 Port C (PC7:PC0)

This is an 8-bit, bi-directional I/O port with internal pull-up resistors (selected for each bit). Output buffers have high sink and standard source capability. Optionally, extra high sink capability can be enabled. See Table 103 on page 247 for port drive strength.
As inputs, port pins that are externally pulled low will source current provided that pull-up resistors are activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running.

This port has alternative pin functions for pin change interrupts, ADC, timer/counter, external interrupts, and serial interfaces. See "Alternative Port Functions" on page 63.

1.1.8 Port D (PD3:PD0)

This is a 4-bit, bi-directional I/O port with internal pull-up resistors (selected for each bit). Output buffers of PD0 and PD3 have symmetrical drive characteristics, with both sink and source capability. Output buffer PD1 has high sink and
standard source capability, while PD2 only has weak drive characteristics due to its use as a reset pin. See Table 103 on page 247 for port drive strength.
As inputs, port pins that are externally pulled low will source current provided that pull-up resistors are activated. Port pins are tri-stated when a reset condition becomes active, even if the clock is not running.
This port has alternative pin functions for pin change interrupts, ADC, serial interfaces, and debugWire. See "Alternative Port Functions" on page 63.

2. Overview

ATtiny828 is a low-power CMOS 8-bit microcontrollers based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny828 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

Figure 3. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in a single instruction, executed in one clock cycle. The resulting architecture is compact and code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

ATtiny828 provides the following features:

- 8 K bytes of in-system programmable Flash
- 512 bytes of SRAM data memory
- 256 bytes of EEPROM data memory
- 28 general purpose I/O lines
- 32 general purpose working registers
- An 8-bit timer/counter with two PWM channels
- A16-bit timer/counter with two PWM channels
- Internal and external interrupts
- A 10-bit ADC with 4 internal and 28 external chanels
- An ultra-low power, programmable watchdog timer with internal oscillator
- A programmable USART with start frame detection
- A slave, $I^{2} \mathrm{C}$ compliant Two-Wire Interface (TWI)
- A master/slave Serial Peripheral Interface (SPI)
- A calibrated 8 MHz oscillator
- A calibrated 32 kHz , ultra low power oscillator
- Three software selectable power saving modes.

The device includes the following modes for saving power:

- Idle mode: stops the CPU while allowing the timer/counter, ADC, analog comparator, SPI, TWI, and interrupt system to continue functioning
- ADC Noise Reduction mode: minimizes switching noise during ADC conversions by stopping the CPU and all I/O modules except the ADC
- Power-down mode: registers keep their contents and all chip functions are disabled until the next interrupt or hardware reset

The device is manufactured using Atmel's high density non-volatile memory technology. The Flash program memory can be re-programmed in-system through a serial interface, by a conventional non-volatile memory programmer or by an onchip boot code, running on the AVR core. The boot program can use any interface to download the application program to the Flash memory. Software in the boot section of the Flash executes while the application section of the Flash is updated, providing true read-while-write operation.

The ATtiny828 AVR is supported by a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators and evaluation kits.

3. General Information

3.1 Resources

A comprehensive set of drivers, application notes, data sheets and descriptions on development tools are available for download at http://www.atmel.com/avr.

3.2 Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.

3.3 Data Retention

Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at $85^{\circ} \mathrm{C}$ or 100 years at $25^{\circ} \mathrm{C}$.

4. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page(s)
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
(0xFE)	Reserved	-	-	-	-	-	-	-	-	
(0xFD)	Reserved	-	-	-	-	-	-	-	-	
(0xFC)	Reserved	-	-	-	-	-	-	-	-	
(0xFB)	Reserved	-	-	-	-	-	-	-	-	
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	Reserved	-	-	-	-	-	-	-	-	
(0xF8)	Reserved	-	-	-	-	-	-	-	-	
(0xF7)	Reserved	-	-	-	-	-	-	-	-	
(0xF6)	Reserved	-	-	-	-	-	-	-	-	
(0xF5)	Reserved	-	-	-	-	-	-	-	-	
(0xF4)	Reserved	-	-	-	-	-	-	-	-	
(0xF3)	Reserved	-	-	-	-	-	-	-	-	
(0xF2)	Reserved	-	-	-	-	-	-	-	-	
(0xF1)	OSCTCALOB	Oscillator Temperature Compensation Register B								Page 33
(0xF0)	OSCTCALOA	Oscillator Temperature Compensation Register A								Page 33
(0xEF)	Reserved	-	-	-	-	-	-	-	-	
(0xEE)	Reserved	-	-	-	-	-	-	-	-	
(0xED)	Reserved	-	-	-	-	-	-	-	-	
(0xEC)	Reserved	-	-	-	-	-	-	-	-	
(0xEB)	Reserved	-	-	-	-	-	-	-	-	
(0xEA)	Reserved	-	-	-	-	-	-	-	-	
(0xE9)	TOCPMSA1	TOCC7S1	TOCC7S0	TOCC6S1	TOCC6S0	TOCC5S1	TOCC5S0	TOCC4S1	TOCC4S0	Page 127
(0xE8)	TOCPMSAO	TOCC3S1	TOCC3S0	TOCC2S1	TOCC2S0	TOCC1S1	TOCC1S0	TOCC0S1	TOCCOS0	Page 127
(0xE7)	Reserved	-	-	-	-	-	-	-	-	
(0xE6)	Reserved	-	-	-	-	-	-	-	-	
(0xE5)	Reserved	-	-	-	-	-	-	-	-	
(0xE4)	Reserved	-	-	-	-	-	-	-	-	
(0xE3)	Reserved	-	-	-	-	-	-	-	-	
(0xE2)	TOCPMCOE	TOCC7OE	TOCC60E	TOCC50E	TOCC4OE	TOCC3OE	TOCC2OE	TOCC1OE	TOCCOOE	Page 128
(0xE1)	Reserved	-	-	-	-	-	-	-	-	
(0xE0)	Reserved	-	-	-	-	-	-	-	-	
(0xDF)	DIDR3	-	-	-	-	ADC27D	ADC26D	ADC25D	ADC24D	Page 154
(0xDE)	DIDR2	ADC23D	ADC22D	ADC21D	ADC20D	ADC19D	ADC18D	ADC17D	ADC16D	Page 154
(0xDD)	Reserved	-	-	-	-	-	-	-	-	
(0xDC)	Reserved	-	-	-	-	-	-	-	-	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	-	-	-	-	-	-	-	-	
(0xD9)	Reserved	-	-	-	-	-	-	-	-	
(0xD8)	Reserved	-	-	-	-	-	-	-	-	
(0xD7)	Reserved	-	-	-	-	-	-	-	-	
(0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xD5)	Reserved	-	-	-	-	-	-	-	-	
(0xD4)	Reserved	-	-	-	-	-	-	-	-	
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	Reserved	-	-	-	-	-	-	-	-	
(0xD1)	Reserved	-	-	-	-	-	-	-	-	
(0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	Reserved	-	-	-	-	-	-	-	-	
(0xCD)	Reserved	-	-	-	-	-	-	-	-	
(0xCC)	Reserved	-	-	-	-	-	-	-	-	
(0xCB)	Reserved	-	-	-	-	-	-	-	-	
(0xCA)	Reserved	-	-	-	-	-	-	-	-	
(0xC9)	Reserved	-	-	-	-	-	-	-	-	
(0xC8)	Reserved	-	-	-	-	-	-	-	-	
(0xC7)	Reserved	-	-	-	-	-	-	-	-	
(0xC6)	UDR				USART	Register				Pages 184, 195
(0xC5)	UBRRH	-	-	-	-		USART Baud	Register High		Page 189, 198
(0xC4)	UBRRL				SART Baud	Register Lo				Page 189, 198
(0xC3)	UCSRD	RXSIE	RXS	SFDE	-	-	-	-	-	Page 188
(0xC2)	UCSRC	UMSEL1	UMSELO	UPM1	UPMO	USBS	UCSZ1/UDO	UCSZO/UCP	UCPOL	Page 186, 197
(0xC1)	UCSRB	RXCIE	TXCIE	UDRIE	RXEN	TXEN	UCSZ2	RXB8	TXB8	Page 185, 196
(0xC0)	UCSRA	RXC	TXC	UDRE	FE	DOR	UPE	U2X	MPCM	Page 184, 196
(0xBF)	Reserved	-	-	-	-	-	-	-	-	
(0xBE)	Reserved	-	-	-	-	-	-	-	-	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page(s)
(0xBD)	TWSD	TWI Slave Data Register								Page 211
(0xBC)	TWSA	TWI Slave Address Register								Page 210
(0xBB)	TWSAM	TWI Slave Address Mask Register							TWAE	Page 211
(0xBA)	TWSSRA	TWDIF	TWASIF	TWCH	TWRA	TWC	TWBE	TWDIR	TWAS	Page 209
(0xB9)	TWSCRB	-	-	-	-	-	TWAA	TWCMD1	TWCMDO	Page 208
(0xB8)	TWSCRA	TWSHE	-	TWDIE	TWASIE	TWEN	TWSIE	TWPME	TWSME	Page 207
(0xB7)	Reserved	-	-	-	-	-	-	-	-	
(0xB6)	Reserved	-	-	-	-	-	-	-	-	
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	Reserved	-	-	-	-	-	-	-	-	
(0xB3)	Reserved	-	-	-	-	-	-	-	-	
(0xB2)	Reserved	-	-	-	-	-	-	-	-	
(0xB1)	Reserved	-	-	-	-	-	-	-	-	
(0xB0)	Reserved	-	-	-	-	-	-	-	-	
(0xAF)	Reserved	-	-	-	-	-	-	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	-	-	-	-	-	-	-	
(0xAB)	Reserved	-	-	-	-	-	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	
(0xA7)	Reserved	-	-	-	-	-	-	-	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	Reserved	-	-	-	-	-	-	-	-	
(0xA1)	Reserved	-	-	-	-	-	-	-	-	
(0xA0)	Reserved	-	-	-	-	-	-	-	-	
(0x9F)	Reserved	-	-	-	-	-	-	-	-	
(0x9E)	Reserved	-	-	-	-	-	-	-	-	
(0x9D)	Reserved	-	-	-	-	-	-	-	-	
(0x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x9B)	Reserved	-	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	-	-	
(0x98)	Reserved	-	-	-	-	-	-	-	-	
(0x97)	Reserved	-	-	-	-	-	-	-	-	
(0x96)	Reserved	-	-	-	-	-	-	-	-	
(0x95)	Reserved	-	-	-	-	-	-	-	-	
(0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	-	-	-	-	-	-	-	
(0x8B)	OCR1BH	Timer/Counter1 - Output Compare Register B High Byte								Page 128
(0x8A)	OCR1BL	Timer/Counter1 - Output Compare Register B Low Byte								Page 128
(0x89)	OCR1AH	Timer/Counter1 - Output Compare Register A High Byte								Page 128
(0x88)	OCR1AL	Timer/Counter1 - Output Compare Register A Low Byte								Page 128
(0x87)	ICR1H	Timer/Counter1 - Input Capture Register High Byte								Page 129
(0x86)	ICR1L	Timer/Counter1 - Input Capture Register Low Byte								Page 129
(0x85)	TCNT1H	Timer/Counter1- Counter Register High Byte								Page 128
(0x84)	TCNT1L	Timer/Counter1 - Counter Register Low Byte								Page 128
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-	Page 127
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	Page 125
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	Page 123
(0x7F)	DIDR1	ADC15D	ADC14D	ADC13D	ADC12D	ADC11D	ADC10D	ADC9D	ADC8D	Page 154
(0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADCOD	Pages 136, 154
(0x7D)	ADMUXB	-	-	REFS	-	-	-	-	MUX5	Page 150
(0x7C)	ADMUXA	-	-	-	MUX4	MUX3	MUX2	MUX1	MUX0	Page 149
(0x7B)	ADCSRB	-	-	-	-	ADLAR	ADTS2	ADTS1	ADTS0	Page 153
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	Page 151

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page(s)
(0x79)	ADCH	ADC - Conversion Result High Byte								Page 151
(0x78)	ADCL	ADC - Conversion Result Low Byte								Page 151
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved	-	-	-	-	-	-	-	-	
(0x73)	PCMSK3	-	-	-	-	PCINT27	PCINT26	PCINT25	PCINT24	Page 54
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	Reserved	-	-	-	-	-	-	-	-	
(0x70)	Reserved	-	-	-	-	-	-	-	-	
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	Page 129
(0x6E)	TIMSK0	-	-	-	-	-	OCIEOB	OCIEOA	TOIEO	Page 102
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	Page 54
(0x6C)	PCMSK1	PCINT15	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	Page 54
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINTO	Page 55
(0x6A)	Reserved	-	-	-	-	-	-	-	-	
(0x69)	EICRA	-	-	-	-	ISC11	ISC10	ISC01	ISC00	Page 55
(0x68)	PCICR	-	-	-	-	PCIE3	PCIE2	PCIE1	PCIEO	Page 56
(0x67)	OSCCAL1	-	-	-	-	-	-	CAL11	CAL10	Page 33
(0x66)	OSCCALO	CAL07	CAL06	CAL05	CALO4	CAL03	CALO2	CALO1	CALOO	Page 32
(0x65)	Reserved	-	-	-	-	-	-	-	-	
(0x64)	PRR	PRTWI	-	PRTIM0	-	PRTIM1	PRSPI	PRUSARTO	PRADC	Page 37
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved	-	-	-	-	-	-	-	-	
(0x61)	CLKPR	-	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPSO	Page 31
(0x60)	WDTCSR	WDIF	WDIE	WDP3	-	WDE	WDP2	WDP1	WDPO	Page 46
0x3F (0x5F)	SREG	1	T	H	S	V	N	Z	C	Page 15
$0 \times 3 \mathrm{E}$ (0x5E)	SPH	-	-	-	-	-	-	SP9	SP8	Page 14
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	Page 14
$0 \times 3 \mathrm{C}$ (0x5C)	Reserved	-	-	-	-	-	-	-	-	
$0 \times 3 \mathrm{~B}(0 \times 5 \mathrm{~B})$	Reserved	-	-	-	-	-	-	-	-	
$0 \times 3 \mathrm{~A}(0 \times 5 \mathrm{~A})$	Reserved	-	-	-	-	-	-	-	-	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved	-	-	-	-	-	-	-	-	
0x37 (0x57)	SPMCSR	SPMIE	RWWSB	RSIG	RWWSRE	RWFLB	PGWRT	PGERS	SPMEN	Page 223
0x36 (0x56)	CCP	CPU Change Protection Register								Page 14
0×35 (0x55)	MCUCR	-	-	-	-	-	-	IVSEL	-	Page 53
0×34 (0x54)	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	Page 45
0×33 (0x53)	SMCR	-	-	-	-	-	SM1	SMO	SE	Page 37
0×32 (0x52)	Reserved	-	-	-	-	-	-	-	-	
0×31 (0x51)	DWDR	debugWire Data Register								Page 213
0×30 (0x50)	ACSRA	ACD	ACPMUX2	ACO	ACI	ACIE	ACIC	ACIS1	ACISO	Page 134
0x2F (0x4F)	ACSRB	HSEL	HLEV	ACLP		ACNMUX1	ACNMUXO	ACPMUX1	ACPMUXO	Page 135
0x2E (0x4E)	SPDR	SPI Data Register								Page 163
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	Page 162
$0 \times 2 \mathrm{C}(0 \times 4 \mathrm{C})$	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPRO	Page 161
$0 \times 2 \mathrm{~B}(0 \times 4 \mathrm{~B})$	GPIOR2	General Purpose I/O Register 2								Page 25
$0 \times 2 \mathrm{~A}(0 \times 4 \mathrm{~A})$	GPIOR1	General Purpose I/O Register 1								Page 25
0x29 (0x49)	Reserved									
0x28 (0x48)	OCROB	Timer/Counter0 - Output Compare Register B								Page 102
0x27 (0x47)	OCROA	Timer/Counter0 - Output Compare Register A								Page 102
0x26 (0x46)	TCNTO	Timer/Counter0 - Counter Register								Page 101
0x25 (0x45)	TCCROB	FOCOA	FOCOB	-	-	WGM02	CSO2	CS01	Cs00	Page 100
0x24 (0x44)	TCCROA	COMOA1	СОМОАО	СОМОВ1	сомово	-	-	WGM01	WGM00	Page 97
0x23 (0x43)	GTCCR	TSM	-	-	-	-	-	-	PSR	Page 132
0x22 (0x42)	Reserved									
0x21 (0x41)	EEARL	EEPROM Address Register Low Byte								Page 23
0x20 (0x40)	EEDR	EEPROM Data Register								Page 24
0x1F (0x3F)	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	Page 24
0x1E (0x3E)	GPIOR0	General Purpose I/O register 0								Page 26
0x1D (0x3D)	EIMSK	-	-	-	-	-	-	INT1	INTO	Page 56
$0 \times 1 \mathrm{C}$ (0x3C)	EIFR	-	-	-	-	-	-	INT1	INTFO	Page 57
0x1B (0x3B)	PCIFR	-	-	-	-	PCIF3	PCIF2	PCIF1	PCIFO	Page 57
$0 \times 1 \mathrm{~A}(0 \times 3 \mathrm{~A})$	Reserved	-	-	-	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	Reserved	-	-	-	-	-	-	-	-	
0x16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	Page 130

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page(s)
0×15 (0x35)	TIFR0	-	-	-	-	-	OCFOB	OCFOA	TOVO	Page 103
0×14 (0x34)	PHDE	-	-	-	-	-	PHDEC	-	-	Page 81
0x13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0×12 (0x32)	Reserved	-	-	-	-	-	-	-	-	
0x11 (0x31)	Reserved	-	-	-	-	-	-	-	-	
0×10 (0x30)	Reserved	-	-	-	-	-	-	-	-	
0x0F (0x2F)	PUED	-	-	-	-	PUED3	PUED2	PUED1	PUED0	Page 82
0x0E (0x2E)	PORTD	-	-	-	-	PORTD3	PORTD2	PORTD1	PORTD0	Page 82
0x0D (0x2D)	DDRD	-	-	-	-	DDD3	DDD2	DDD1	DDD0	Page 82
$0 \times 0 \mathrm{C}(0 \times 2 \mathrm{C})$	PIND	-	-	-	-	PIND3	PIND2	PIND1	PIND0	Page 83
0x0B (0x2B)	PUEC	PUEC7	PUEC6	PUEC5	PUEC4	PUEC3	PUEC2	PUEC1	PUEC0	Page 83
$0 \times 0 \mathrm{~A}(0 \times 2 \mathrm{~A})$	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	Page 83
0×09 (0x29)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	Page 83
0x08 (0x28)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	Page 84
0×07 (0x27)	PUEB	PUEB7	PUEB6	PUEB5	PUEB4	PUEB3	PUEB2	PUEB1	PUEB0	Page 84
0x06 (0x26)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	Page 84
0x05 (0x25)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	Page 84
0x04 (0x24)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	Page 85
0x03 (0x23)	PUEA	PUEA7	PUEA6	PUEA5	PUEA4	PUEA3	PUEA2	PUEA1	PUEAO	Page 85
0x02 (0x22)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	Page 85
0×01 (0x21)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	Page 85
0×00 (0x20)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINAO	Page 86

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. I/O Registers within the address range $0 \times 00-0 \times 1 \mathrm{~F}$ are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0×00 to $0 \times 1 \mathrm{~F}$ only.

5. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd , Rr	Add two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z,C,N, V, H	1
ADC	Rd , Rr	Add with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z,C,N,V,H	1
ADIW	Rdl, K	Add Immediate to Word	Rdh:Rdl \leftarrow Rdh:Rdl +K	Z,C,N, V, S	2
SUB	Rd, Rr	Subtract two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z,C,N, V, H	1
SUBI	Rd, K	Subtract Constant from Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}-\mathrm{C}$	Z,C,N, V, H	1
SBIW	Rdil, K	Subtract Immediate from Word	Rdh:RdI \leftarrow Rdh:Rdl - K	Z,C,N, V, S	2
AND	Rd, Rr	Logical AND Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rr}$	Z,N,V	1
ANDI	Rd , K	Logical AND Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{K}$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} v \mathrm{Rr}$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd}$ v K	Z,N, V	1
EOR	Rd, Rr	Exclusive OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z,N, V	1
COM	Rd	One's Complement	$\mathrm{Rd} \leftarrow 0 \times \mathrm{FF}-\mathrm{Rd}$	Z,C,N,V	1
NEG	Rd	Two's Complement	$\mathrm{Rd} \leftarrow 0 \times 00-\mathrm{Rd}$	Z,C,N, V, H	1
SBR	Rd, K	Set Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}$ v K	Z,N, V	1
CBR	Rd, K	Clear Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet(0 \times F F-K)$	Z,N,V	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z,N,V	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rd}$	Z,N,V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z,N,V	1
SER	Rd	Set Register	$\mathrm{Rd} \leftarrow 0 \mathrm{xFF}$	None	1
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
IJMP		Indirect Jump to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	2
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	3
ICALL		Indirect Call to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	3
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	4
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if ($\mathrm{Rd}=\mathrm{Rr}$) $\mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
CP	Rd, Rr	Compare	$\mathrm{Rd}-\mathrm{Rr}$	Z, N, V, C, H	1
CPC	Rd, Rr	Compare with Carry	$\mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	$\mathrm{Z}, \mathrm{N}, \mathrm{V}, \mathrm{C}, \mathrm{H}$	1
CPI	Rd, K	Compare Register with Immediate	Rd-K	$\mathrm{Z}, \mathrm{N}, \mathrm{V}, \mathrm{C}, \mathrm{H}$	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b)=0) P C \leftarrow P C+2$ or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1) P C \leftarrow P C+2$ or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC $\leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC $\leftarrow P C+\mathrm{k}+1$	None	1/2
BREQ	k	Branch if Equal	if $(Z=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCS	k	Branch if Carry Set	if ($\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCC	k	Branch if Carry Cleared	if ($C=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BRSH	k	Branch if Same or Higher	if ($\mathrm{C}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLO	k	Branch if Lower	if ($\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRMI	k	Branch if Minus	if ($\mathrm{N}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRPL	k	Branch if Plus	if $(\mathrm{N}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(\mathrm{N} \oplus \mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(\mathrm{N} \oplus \mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if $(\mathrm{H}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if $(\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch if T Flag Set	if $(T=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if $(\mathrm{T}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if $(\mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(\mathrm{V}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if $(\mathrm{I}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if $(1=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P, b	Set Bit in I/O Register	$\mathrm{I} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$1 / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\operatorname{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N, V	1
LSR	Rd	Logical Shift Right	$\mathrm{Rd}(\mathrm{n}) \leftarrow \mathrm{Rd}(\mathrm{n}+1), \mathrm{Rd}(7) \leftarrow 0$	Z,C,N, V	1
ROL	Rd	Rotate Left Through Carry	$\mathrm{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \mathrm{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \mathrm{Rd}(7)$	Z,C,N, V	1
ROR	Rd	Rotate Right Through Carry	$\mathrm{Rd}(7) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}) \leftarrow \mathrm{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \mathrm{Rd}(0)$	Z,C,N, V	1

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ASR	Rd	Arithmetic Shift Right	$\mathrm{Rd}(\mathrm{n}) \leftarrow \mathrm{Rd}(\mathrm{n}+1), \mathrm{n}=0 . .6$	Z,C,N, V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3.0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3.0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}(\mathrm{b})$	T	1
BLD	Rd, b	Bit load from T to Register	$\mathrm{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$\mathrm{C} \leftarrow 1$	C	1
CLC		Clear Carry	$\mathrm{C} \leftarrow 0$	C	1
SEN		Set Negative Flag	$N \leftarrow 1$	N	1
CLN		Clear Negative Flag	$N \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	z	1
CLZ		Clear Zero Flag	$\mathrm{z} \leftarrow 0$	z	1
SEI		Global Interrupt Enable	$1 \leftarrow 1$	1	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	1	1
SES		Set Signed Test Flag	$\mathrm{S} \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$S \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow.	$V \leftarrow 1$	V	1
CLV		Clear Twos Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
MOVw	Rd, Rr	Copy Register Word	$\mathrm{Rd}+1: \mathrm{Rd} \leftarrow \mathrm{Rr}+1: \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
LD	Rd, X	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, $\mathrm{X}+$	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{X}), \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1, \mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, Y	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LD	Rd, $\mathrm{Y}+$	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Y}), \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1, \mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LDD	Rd, $\mathrm{Y}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Y}+\mathrm{q})$	None	2
LD	Rd, Z	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LD	Rd, $\mathrm{Z}+$	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LDD	Rd, $\mathrm{Z}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Z}+\mathrm{q})$	None	2
LDS	Rd, k	Load Direct from SRAM	$\mathrm{Rd} \leftarrow(\mathrm{k})$	None	2
ST	X, Rr	Store Indirect	$(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{X}+\mathrm{Rr}$	Store Indirect and Post-Inc.	$(\mathrm{X}) \leftarrow \mathrm{Rr}, \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X-1,(X) \leftarrow R \mathrm{Rr}$	None	2
ST	Y, Rr	Store Indirect	$(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{Y}+$, Rr	Store Indirect and Post-Inc.	$(\mathrm{Y}) \leftarrow \mathrm{Rr}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1,(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Y}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(\mathrm{Y}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
ST	Z, Rr	Store Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
ST	Z + , Rr	Store Indirect and Post-Inc.	$(\mathrm{Z}) \leftarrow \mathrm{Rr}, \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1,(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Z}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(Z+q) \leftarrow R \mathrm{Rr}$	None	2
STS	k, Rr	Store Direct to SRAM	$(\mathrm{k}) \leftarrow \mathrm{Rr}$	None	2
LPM		Load Program Memory	$\mathrm{R} 0 \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z	Load Program Memory	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, $\mathrm{Z}+$	Load Program Memory and Post-Inc	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	3
SPM		Store Program Memory	$(\mathrm{Z}) \leftarrow \mathrm{R} 1: \mathrm{RO}$	None	-
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
PUSH	Rr	Push Register on Stack	STACK $\leftarrow \mathrm{Rr}$	None	2
POP	Rd	Pop Register from Stack	$\mathrm{Rd} \leftarrow$ STACK	None	2
MCU CONTROL INSTRUCTIONS					
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

6. Ordering Information

6.1 ATtiny828

Speed (MHz) ${ }^{(1)}$	Supply Voltage (V) ${ }^{(1)}$	Temperature Range	Package ${ }^{(2)}$	Accuracy ${ }^{(3)}$	Ordering Code ${ }^{(4)}$
20 MHz	$1.7-5.5 \mathrm{~V}$	$\begin{gathered} \text { Industrial }{ }^{(5)} \\ \left(-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right) \end{gathered}$	32A	$\pm 10 \%$	ATtiny828-AU
				$\pm 2 \%$	ATtiny828R-AU
				$\pm 10 \%$	ATtiny828-AUR
				$\pm 2 \%$	ATtiny828R-AUR
			32M1-A	$\pm 10 \%$	ATtiny828-MU
				$\pm 2 \%$	ATtiny828R-MU
				$\pm 10 \%$	ATtiny828-MUR
				$\pm 2 \%$	ATtiny828R-MUR

Notes: 1. For speed vs. supply voltage, see section "Speed" on page 249.
2. All packages are Pb -free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS).
3. Indicates accuracy of internal oscillator. See "Accuracy of Calibrated Internal Oscillator" on page 249.
4. Code indicators:

- U: matte tin
- R: tape \& reel

5. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

Package Type

32A
32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
32M1-A
32-pad, $5 \times 5 \times 1.0$ body, Lead Pitch 0.50 mm , Quad Flat No-Lead (QFN)

7. Packaging Information

$7.132 A$

Notes:

1. This package conforms to JEDEC reference MS-026, Variation ABA.
2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch.
3. Lead coplanarity is 0.10 mm maximum.

COMMON DIMENSIONS
(Unit of measure $=\mathrm{mm}$)

SYMBOL	MIN	NOM	MAX	NOTE
A	-	-	1.20	
A1	0.05	-	0.15	
A2	0.95	1.00	1.05	
D	8.75	9.00	9.25	
D1	6.90	7.00	7.10	Note 2
E	8.75	9.00	9.25	
E1	6.90	7.00	7.10	Note 2
B	0.30	-	0.45	
C	0.09	-	0.20	
L	0.45	-	0.75	
e	0.80 TYP			

2010-10-20

2325 Orchard Parkway
San Jose, CA 95131
32A, 32-lead, $7 \times 7 \mathrm{~mm}$ body size, 1.0 mm body thickness, 0.8 mm lead pitch, thin profile plastic quad flat package (TQFP)

7.2 32M1-A

5/25/06
AWI. 2325 Orchard Parkway
San Jose, CA 95131

TITLE
32M1-A, 32-pad, $5 \times 5 \times 1.0 \mathrm{~mm}$ Body, Lead Pitch 0.50 mm , 3.10 mm Exposed Pad, Micro Lead Frame Package (MLF)
DRAWING NO. ${ }^{\text {REV. }}$ San Jose, CA 95131

8. Errata

The revision letters in this section refer to the revision of the corresponding ATtiny828 device.

8.1 Rev. A

- Port Pin Restrictions When ULP Oscillator Is Disabled

1. Port Pin Restrictions When ULP Oscillator Is Disabled

Port pin PD3 is not guaranteed to perform as a reliable input when the Ultra Low Power (ULP) oscillator is not running. In addition, the pin is pulled down internally when ULP oscillator is disabled. TWI and SPI use may be limited when ULP is not running since pin PD3 is used by SCL and SCK signals.
Problem Fix / Workaround

The ULP oscillator is automatically activated when required. To use PD3 as an input or clock signal of TWI/SPI, activate the watchdog timer. The watchdog timer automatically enables the ULP oscillator.

9. Revision History

Doc. Rev.	Date	Comments
8371 A	$08 / 2012$	Initial document release.

Atmel Corporation

1600 Technology Drive
San Jose, CA 95110
USA
Tel: (+1) (408) 441-0311
Fax: (+1) (408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 01-5 \& 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Roa
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH	Atmel Japan G.K.
Business Campus	16F Shin-Osaki Kangyo Bldg
Parkring 4	1-6-4 Osaki, Shinagawa-ku
D-85748 Garching b. Munich	Tokyo 141-0032
GERMANY	JAPAN
Tel: $(+49) 89-31970-0$	Tel: (+81) (3) 6417-0300
Fax: (+49) 89-3194621	Fax: (+81) (3) 6417-0370

