Audio ICs

LED level meter driver, 5-point, VU scale BA6154

The BA6154 is a driver IC for LED VU level meters in stereo equipment and other display applications. The IC displays the input level (range: -10dB to + 6dB) on a 5-point, bar-type LED display. The BA6137 includes a rectifier amplifier allowing direct AC input, and has constant-current outputs, so it can directly drive the LEDs without variations in LED current due to supply voltage fluctuations.

Applications

VU meters, signal meters, and other display devices.

Features

- 1) Rectifier amplifier allows either AC or DC input.
- 2) Rectifier amplifier has high gain (26dB), so operation at low input level is possible.
- Constant-current outputs for constant LED current when the power supply voltage fluctuates.
- 4) Built-in reference voltage means that power supply voltage fluctuations do not effect the display.
- Wide operating power supply voltage range (3.5V to 16V) for a wide range of applications.
- Low PCB space requirements. Comes in a compact 9-pin SIP package and requires few external components.

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Power dissipation	Pd	800*	mW
Operating temperature	Topr	-25~+60	C
Storage temperature	Tstg	-55~+125	C
Junction temperature	Tj	150	C

• Absolute maximum ratings (Ta = 25° C)

* Reduced by 6.4mW for each increase in Ta of 1°C over 25°C.

Block diagram

•Electrical characteristics (unless otherwise noted, Ta = 25° C, Vcc = 6.0V, and Vf = 1kHz)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Power supply voltage	Vcc	3.5	6	16	V	_
Quiescent current	la	-	5	8	mA	VIN=0V
Comparator level 1	Vc1	-13	-10	-7	dB	-
Comparator level 2	Vc2	-6.5	-5	-3.5	dB	-
Comparator level 3	Vсз	-	0	—	dB	Adjustment point
Comparator level 4	Vc4	2.5	3	3.5	dB	-
Comparator level 5	Vc5	5	6	7	dB	-
Sensitivity	VIN	36	45	54	mVrms	Vc3 on level
LED current	LED	11	15	18.5	mA	_
Input bias current	lino	_	0.3	1.0	μA	_

Measurement circuit

Application example

Fig. 3

The response time (attack and release time) can be changed by varying the values of C_1 and R_1 .

 C_2 is a coupling capacitor, and the potentiometer VR varies the input level. Input a fixed voltage level and adjust the potentiometer so that the LED lights at 0dB. To reduce the LED current, connect a resistor either in parallel

•External dimensions (Units: mm)

(Fig. 3 (1)) or in series (Fig. 3 (2)) with the LED. If a resister is connected in series with the LED, the LED current will change if the supply voltage fluctuates.

Note: If the power supply voltage exceeds 9V, insert a resistor in series with the LED current supply line, or connect a heat sink so that the maximum power dissipation Pd Max. is not exceeded (see Fig. 4).