## LED level meter driver, 5-point, VU scale

The BA6154 is a driver IC for LED VU level meters in stereo equipment and other display applications.
The IC displays the input level (range: -10 dB to +6 dB ) on a 5 -point, bar-type LED display.
The BA6137 includes a rectifier amplifier allowing direct AC input, and has constant-current outputs, so it can directly drive the LEDs without variations in LED current due to supply voltage fluctuations.

## OApplications

VU meters, signal meters, and other display devices.

## -Features

1) Rectifier amplifier allows either $A C$ or $D C$ input.
2) Rectifier amplifier has high gain (26dB), so operation at low input level is possible.
3) Constant-current outputs for constant LED current when the power supply voltage fluctuates.
4) Built-in reference voltage means that power supply voltage fluctuations do not effect the display.
5) Wide operating power supply voltage range ( 3.5 V to 16 V ) for a wide range of applications.
6) Low PCB space requirements. Comes in a compact 9-pin SIP package and requires few external components.
-Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

| Parameter | Symbol | Limits | Unit |
| :--- | :---: | :---: | :---: |
| Power supply voltage | Vcc | 18 | V |
| Power dissipation | Pd | $800^{*}$ | mW |
| Operating temperature | Topr | $-25 \sim+60$ | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | Tstg | $-55 \sim+125$ | ${ }^{\circ} \mathrm{C}$ |
| Junction temperature | Tj | 150 | ${ }^{\circ} \mathrm{C}$ |

* Reduced by 6.4 mW for each increase in Ta of $1^{\circ} \mathrm{C}$ over $25^{\circ} \mathrm{C}$.

Block diagram


Electrical characteristics (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=6.0 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{f}}=1 \mathrm{kHz}$ )

| Parameter | Symbol | Min. | Typ. | Max. | Unit | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power supply voltage | Vcc | 3.5 | 6 | 16 | V | - |
| Quiescent current | 10 | - | 5 | 8 | mA | $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ |
| Comparator level 1 | Vo1 | -13 | -10 | -7 | dB | - |
| Comparator level 2 | V c2 | -6.5 | -5 | $-3.5$ | dB | - |
| Comparator level 3 | Vc3 | - | 0 | - | dB | Adjustment point |
| Comparator level 4 | Vc4 | 2.5 | 3 | 3.5 | dB | - |
| Comparator level 5 | V c5 | 5 | 6 | 7 | dB | - |
| Sensitivity | VIN | 36 | 45 | 54 | mV rms | Vc3 on level |
| LED current | ILED | 11 | 15 | 18.5 | mA | - |
| Input bias current | Inno | - | 0.3 | 1.0 | $\mu \mathrm{A}$ | - |

- Measurement circuit


Fig. 1


Fig. 2

(1) Parallel

(2) Series

Fig. 3
The response time (attack and release time) can be changed by varying the values of $\mathrm{C}_{1}$ and $\mathrm{R}_{1}$.
$\mathrm{C}_{2}$ is a coupling capacitor, and the potentiometer VR varies the input level. Input a fixed voltage level and adjust the potentiometer so that the LED lights at OdB. To reduce the LED current, connect a resistor either in parallel

External dimensions (Units: mm)


SIP9


Fig. 4
(Fig. 3 (1)) or in series (Fig. 3 (2)) with the LED. If a resister is connected in series with the LED, the LED current will change if the supply voltage fluctuates.

Note: If the power supply voltage exceeds 9 V , insert a resistor in series with the LED current supply line, or connect a heat sink so that the maximum power dissipation Pd Max. is not exceeded (see Fig. 4).

