Optical disc ICs

4-channel BTL driver for CD players BA6297AFP

The BA6297AFP is a 4-channel BTL driver for CD player actuators and motors. The preamplifier has both positive and negative input pins and output pins, making this IC suited to a broad range of applications.

ApplicationsCD players

Features

- 1) 4-channel BTL driver.
- HSOP 28-pin package allows for miniaturization of applications.
- 3) Internal thermal shutdown.

- Driver gain is adjustable with a single attached resistor.
- 5) Both positive and negative input pins, for adaptability for a wide range of inputs (including negative phase input).

•Absolute maximum ratings (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	V
Power dissipation	Pd	1.7*	W
Operating temperature	Topr	-40~+80	ΰ
Storage temperature	Tstg	-55~+150	Ĵ

*Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C.

When mounted on a 50 mm imes 50 mm imes 1.0 mm paper phenol board

• Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating power supply voltage	Vcc	6.0	—	9.0	V

Block diagram

•Electrical characteristics (unless otherwise noted, Ta = 25° C, Vcc = 8V, f = 1kHz, RL = 8 Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement Circuit	
Quiescent current dissipation	la	6.5	11	15.5	mA	No load		
Output offset voltage	Voo	-30	—	30	mV			
Maximum output voltage, high	Vонd	5.2	5.6	_	V	VINDC=1V		
Maximum output voltage, low	Vold	Ι	1.3	1.55	V	VINDC=7V		
Input bias current	Ів	—	—	300	nA			
Synchronous input voltage	VICM	1.6	-	6.8	V	Preamplifier, buffer configured		
Preamplifier VoH	VOHP	6.6	7.1	-	V	$V_{INDC}=GND, R_{L}=\infty$		
Preamplifier VoL	VOLP	_	0.8	1.3	V	VINDC=VCC, RL=∞	Fig.5	
Preamplifier Іон	Юнр	2	_	_	mA	Preamplifier output 100 Ω at GND		
Preamplifier IoL	IOLP	5	-	-	mA	Preamplifier output 100Ω at Vcc		
Ripple rejection ratio	RR	-	70	-	dB	V _{IN} =-20dBV, 100Hz		
Slew rate	SR	-	2	-	V/µs	100 kHz square wave, 3VP-P output		
Bias pin voltage	Vref	3.65	3.80	3.95	V			
Bias voltage variation	△Vref	-30	-	25	mV	1 mA sink / source		
Mute-off voltage	VMUTE	2.0	—	—	٧			

Electrical characteristic curves

Fig. 1 Thermal derating curve

Fig. 2 Power supply voltage vs. output amplitude

INPUT VOLTAGE : VIN $\langle V \rangle$

Fig. 4 Driver I / O characteristics

Measurement circuit

Table 1 Measurement circuit switch

Parameter			Noto							
raiametei	Vin	BIAS	Vref	NF	R∟	lpa	Ів (+)	RIP	Note	
la	D	ON	ON	10k	OFF	0	ON	ON		
Voo	Ļ	Ļ	Ļ	Ļ	ON	Ļ	Ļ	Ļ		
Vонd	Ļ	OFF	ţ	Ļ	Ļ	ţ	Ļ	Ļ	VINDC=1V、7V	
Vold	↓	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	Ļ	VINDC=1V、7V	
Ів	0	Ļ	Ļ	1M	OFF	Ļ	OFF	Ļ	Both pin outputs: 1 M Ω	
Vicм	Ļ	ON	OFF	SHORT	Ļ	Ļ	ON	Ļ		
Vohp	Ļ	OFF	ON	10k	Ļ	ţ	Ļ	Ļ	VINDC=GND	
VOLP	Ļ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	Ļ	VINDC=VCC	
Юнр	Ļ	Ļ	Ļ	SHORT	Ļ	G	Ļ	Ļ		
IOLP	+	Ļ	ţ	Ļ	Ļ	V	Ļ	Ļ		
RR	D	ON	Ļ	10k	ON	0	Ļ	OFF		
Vref	0	Ļ	Ļ	Ļ	Ļ	ţ	Ļ	ON		
∆Vref	Ļ	OFF	OFF	Ļ	OFF	Ļ	Ļ	Ļ		

* Unless otherwise noted, VBIAS = VINDC = 2.5 V

Circuit operation

The BA6297AFP comprises a 4-channel driver, internal bias amplifier, mute pin and thermal shutdown.

(1) Driver

The driver uses a buffer to output one of the outputs from its preamplifier with no modification, and uses an inversion amplifier to invert the other output before sending it to the driver buffer. The inversion amplifier's reference is the bias voltage generated internally (pin 7 voltage), and so the preamplifier output must make the zero level equal to the internal bias voltage. See Figs. 7 and 8 for examples.

Fig. 8 Input centered on 2.5 V

(2) Internal bias amplifier

Configured as shown in Fig. 9. The internal bias voltage $(V_{\mbox{\scriptsize ref}})$ is calculated thus :

Fig. 9 Internal bias block

(3) Mute pin (pin 15)

The output current is muted when this pin receives the low level or a high impedance. Set the pin voltage at high during normal operation.

Fig. 10 The mute pin

(4) Thermal shutdown

The BA6297AFP has an internal thermal shutdown circuit. Output current is muted when the chip temperature exceeds $175^{\circ}C$ (typically).

Operation notes

(1) The BA6297AFP has an internal thermal shutdown circuit. Output current is muted when the chip temperature exceeds 175°C (typically).

(2) If the mute pin (pin 15) voltage is opened or lowered below 0.5V, the output current will be muted. Pin 2 should be pulled up above 2.0V during normal use. During muting, the output pins remain at the internal bias voltage, roughly ($V_{CC} - V_F$) / 2.

 $(3) \quad \mbox{Be sure to connect the IC to a } 0.1 \mu\mbox{F bypass capacitor to the power supply, at the base of the IC. }$

(4) The radiating fin is connected to the packages internal GND, but should also be connected to an external ground.

Application example

Fig. 11

External dimensions (Units: mm)

