Motor driver ICs

3-phase motor driver for CD-ROMs BA6848FP / BA6853FS

The BA6848FP and BA6853FS are single-chip ICs developed for CD-ROM spindle motor drives. These ICs are 3-phase, full-wave, pseudo-linear drives with FG output, FG composite output, and reverse-rotation pins built-in for high functionality and high performance.

ApplicationsCD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM

Features

- 1) Three-phase, full wave, pseudo-linear drive system.
- 2) Built-in PS pin for power save mode when ON.
- 3) Built-in thermal shutdown and current limiter circuits.
- 4) Built-in Hall bias circuit (for the BA6848FP).
- 5) Built-in FG output and FG composite output.
- 6) Built-in reverse-rotation pin.

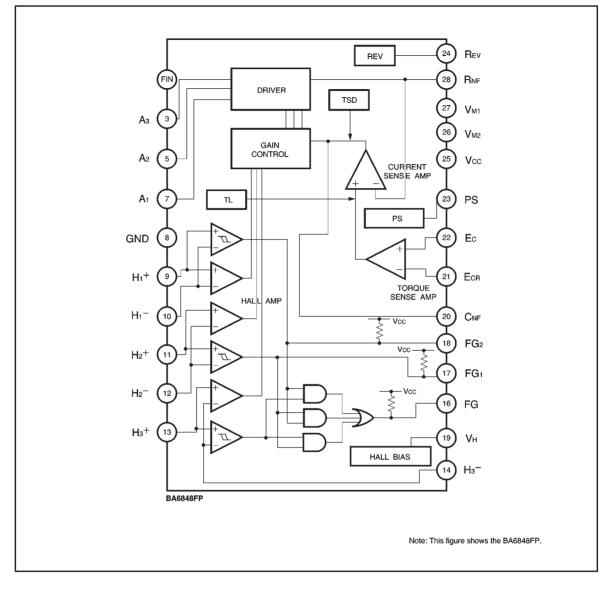
Parameter		Symbol	Limits	Unit
Applied voltage		Vcc	7	V
Applied voltage		V _{M1,2}	16	V
Power dissipation	BA6848FP	Pd	1700*1	mW
	BA6853FS		1000*2	
Operating temperature		Topr	-20~+75	ĉ
Storage temperature		Tstg	$-55 \sim +150^{*4}$	Ĉ
Output current		Ιουτ	1300* ³	mW

• Absolute maximum ratings (Ta = 25° C)

*1 When mounted on a 90mm×50mm×1.6 mm glass epoxy board.

Reduced by 13.6mW for each increase in Ta of 1°C over 25°C. *2 Reduced by 8.0mW for each increase in Ta of 1°C over 25°C.

*3 Should not exceed Pd and ASO values.


*4 Ta should not exceed 150°C.

• Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Limits	Unit
	Vcc	4.25~5.5	V
Operating power supply voltage	V _{M1}	3.0~15	V
	V _{M2}	3.0~15	V

Block diagram

Pin descriptionsBA6848FP

Pin No.	Pin name	Function	
1	N.C.	N.C.	
2	N.C.	N.C.	
3	Aз	Output	
4	N.C.	N.C.	
5	A2	Output	
6	N.C.	N.C.	
7	A1	Output	
8	GND	Ground	
9	H1+	Hall signal input	
10	H1 ⁻	Hall signal input	
11	H ₂ +	Hall signal input	
12	H2 ⁻	Hall signal input	
13	H₃+	Hall signal input	
14	H₃ [_]	Hall signal input	
15	N.C.	N.C.	
16	FG	Three-phase composite FG signal output	
17	FG₂	FG signal output	
18	FG₁	FG signal output	
19	Vн	Hall bias	
20	CNF	For capacitor for phase compensation	
21	Ecr	Torque control reference	
22	Ec	Torque control	
23	PS	Power save	
24	Rev	Reverse rotation	
25	Vcc	Power supply	
26	V _{M2}	Motor power supply	
27	V _{M1}	12V power supply	
28	RNF	For resistor for output current detection	
FIN	FIN	SUB GND	

BA6853FS

Pin No.	Pin name	Function	
1	GND	SUB GND	
2	FG	Three-phase composite FG signal output	
3	FG₂	FG signal output	
4	FG₁	FG signal output	
5	Cnf	For capacitor for phase compensation	
6	Ecr	Torque control reference	
7	Ec	Torque control	
8	PS	Power save	
9	Rev	Reverse rotation	
10	Vcc	Power supply	
11	V _{M2}	Motor power supply	
12	V _{M1}	12V power supply	
13	RNF	For resistor for output curren detection	
15	Аз	Output	
16	A2	Output	
17	Aı	Output	
18	GND	Ground	
19	H1+	Hall signal input	
20	H1 ⁻	Hall signal input	
21	H2 ⁺	Hall signal input	
22	H2 ⁻	Hall signal input	
23	H3+	Hall signal input	
24	H₃ [_]	Hall signal input	

- ●I / O circuit diagrams
- (1) Power save(PS)

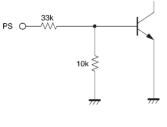


Fig.1

(4) Coil output (A₁, A₂, A₃)

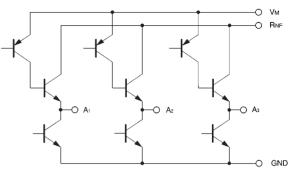


Fig.4

(2) Reverse (REV)

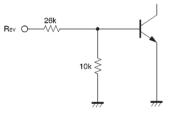
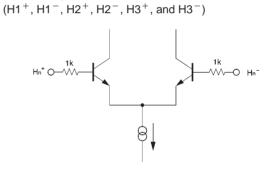
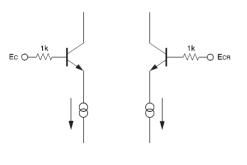




Fig.2

(3) Torque command input

(6) Hall bias

(5) Hall input

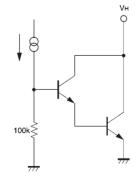
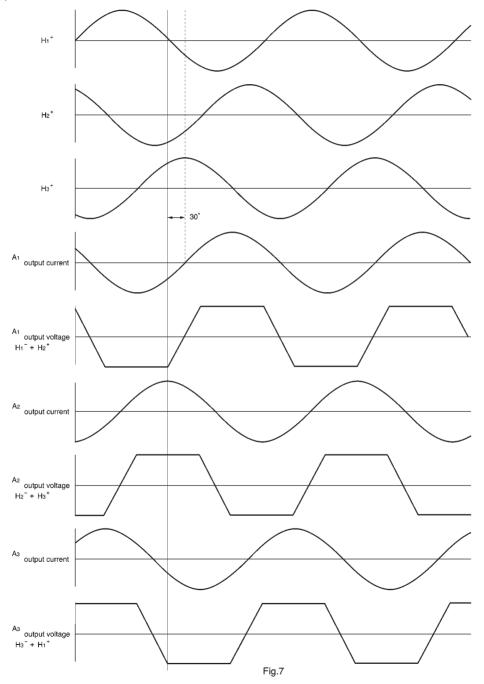


Fig.6 (for BA6848FP only)

Note: Resistances are typical values.

Motor driver ICs

BA6848FP / BA6853FS

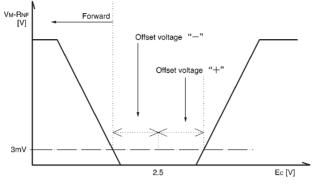

Parameter	Symbol	Min.	Тур.	Max.	Unit	Coniditions
(Total)						
Circuit current 1	lcc1	_	0	0.2	mA	With power save ON
Circuit current 2	lcc2	_	5.2	7.6	mA	With power save OFF
Power save>						
ON voltage	Vpson	—	-	1.5	V	-
)FF voltage	Vpsoff	3.5	-	-	V	-
Hall bias $ angle$						
lall bias voltage	Vнв	0.5	0.9	1.5	V	IHB=10mA
Hall amplifier $ angle$						
nput bias current	Іна	-	0.7	3.0	μA	-
Common-phase input voltage	VHAR	1.5	_	4.0	V	_
linimum input level	Vinh	50	-	_	mV _{P-P}	-
l₃ hysteresis level	VHYS	10	20	40	mV	_
orque command>						
nput voltage	Ec, Ecr	1.0	—	4.0	V	_
ffset voltage (+)	Ecoff+	-80	-50	-20	mV	Ecr=2.5V
ffset voltage (-)	Ecoff-	20	50	80	mV	Ecr=2.5V
put bias current	Ecin	_	0.5	2.0	μA	Ec=EcR=2.5V
O gain	Gec	0.41	0.51	0.61	A/V	Ec=1.5, 2.0V, 3.0, 3.5V R _{NF} =0.5Ω
FG〉						
G output high level voltage	Vfgh	4.5	4.9	5.0	V	IFG=-20 μ A
G output low level voltage	Vfgl	0	0.25	0.4	V	IFG=3mA
Dutput〉						
output high level saturation oltage	Vсн	_	1.0	1.5	v	Io=-600mA
utput low level saturation oltage	VcL	_	0.4	0.8	v	lo=600mA
м leakage current	IVML	_	35	70	mA	Ec=5V output open
utput limit current	Ιτι	560	700	840	mA	RNF=0.5Ω
Reverse rotation $ angle$						
N voltage	Vrson	4.0	-	-	V	_
F voltage	Vrsoff	_	_	1.5	V	

◎Not designed for radiation resistance.

Circuit operation

(1) Hall input and output

The phase relationship between the Hall input signals and the output current and voltage is shown below in Fig.7. The input three-phase Hall signal is sent to the matrix section for waveform synthesis. This signal is input to the output driver and supplies the drive current to the motor coil.



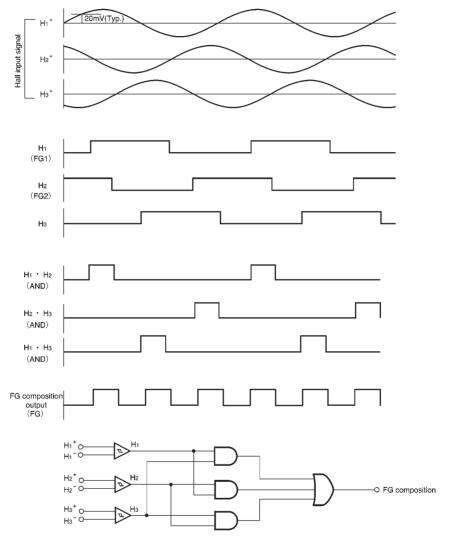
(2) Torque command

The R_{NF} pin voltage with respect to the torque command

(Ec) is as follows:

	Reverse rotation pin voltage		
	HIGH	LOW	
Ecr < Ec	Forward rotation	Reverse rotation	
ECR > EC	Stopped	Forward rotation	

The I / O gain G_{EC} from E_C pin to R_{NF} pin (output current) is determined by the R_{NF} detector resistance.

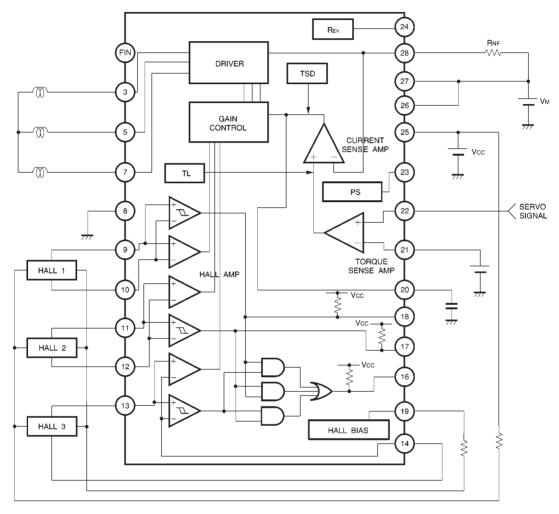

 $G_{EC} = 0.255 / R_{NF} [A / V]$

The torque limit current I_{TL} is:

ITL = 0.35 / RNF [A]

(3) FG signal output waveform

From the Hall input signal, a pulse signal (FG signal) is output proportional to the motor speed of rotation. This timing is shown in Fig.9 below.



(4) Other

For the PS pins, the circuits turn on at 3.5 V or greater, and enter the power save mode at 1.5 V or less. For the R_{EV} pin, it enters the reverse mode at 4.0 V or greater, and enters the normal mode at 1.5 V or less.

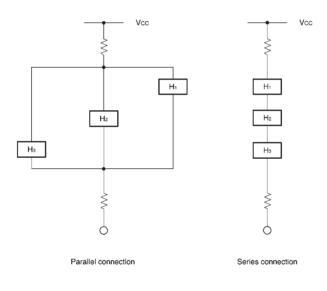
Application example

Note: This figure shows the BA6848FP.

Fig.10

Operation notes

(1) Power save

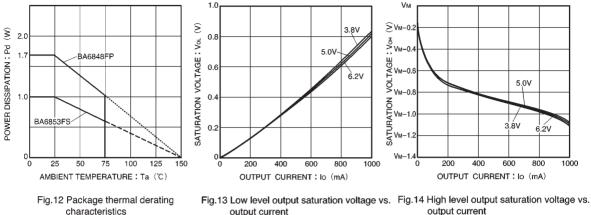

The power save input is an input / output circuit as shown in Fig.1. The power save pins have a thermal derating characteristic of -8mV / °C. The resistance also has a fluctuation of $\pm 30\%$, so be careful of the input voltage range.

(2) Reverse

The reverse input is an input / output circuit as shown in Fig.2. The reverse pins have a thermal derating characteristic of -7mV / °C. The resistance also has a fluctuation of ±30%, so be careful of the input voltage range.

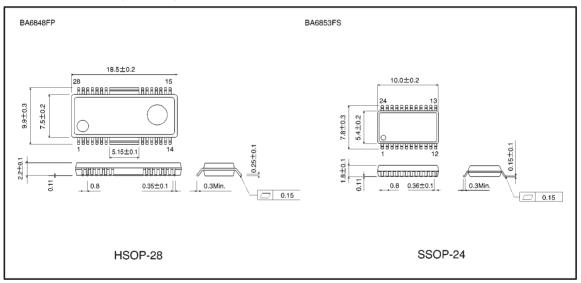
(3) Hall input

The Hall input is an input circuit as shown in Fig.5. The Hall elements can be connected in series or in parallel.



(4) Thermal shutdown (TSD)

When the junction temperature reaches $175^{\circ}C$ (Typ.), the A₁ to A₃ coil outputs become open. There is an approximate $15^{\circ}C$ (Typ.) temperature hysteresis.


Motor driver ICs

Electrical characteristic curves

output current output current

External dimensions (Units: mm)

