High-performance Video Signal Switchers

Broadband Triple Circuits Video Signal Switchers
 BA7657SIF, BH7659FS

-Description

The BA7657S, BA7657F, and BH7659FS are ICs that have been developed for use in PC monitors, HDTVs (high definition televisions), and other high-resolution display devices. In addition to their wide-range switching circuits for RGB signals, HD signals, and VD signals, the BA7657S and BA7657F feature a separation (BUNRI) circuit for the synchronization signal that is superposed on the G signal, while the BH7659FS features an on-chip switch for $I^{2} \mathrm{C}$ bus signals (SDA and SCL). These ICs can be used to simplify the input block configuration in advanced display devices.

-Features

1) Operates on 5 V single power supply.
2) Built-in wide-range RGB signal switches. (BA7657S/F: fc $=230 \mathrm{MHz}$)
(BH7659FS: fc $=250 \mathrm{MHz}$)
3) Built-in switching circuit for HD signal and VD signal.
4) Built-in separation (BUNRI) circuit for synchronization signal superposed on G signal. (BA7657S/F)
5) Built-in switch for $I^{2} C$ bus signals (SDA and SCL). (BH7659FS)
6) Built-in power saving function. (BH7659FS)
\bullet Use
PC monitors, Plasma displays, LCD monitors, and Other devices that use wide-range RGB signal switching.
-Lineup

Parameter	BA7657S/F	BH7659FS
Circuit current (mA)	35	25
Circuit current during low-power mode (mA)	-	14
RGB signal SW block frequency characteristics (MHz)	230	250
Synchronization signal SW block circuit configuration	2 digital switching circuits	4 CMOS analog switching circuits
Synchronization signal separation circuit	\checkmark	-
Package	SDIP24/SOP24	SSOP-A32

-Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter		Symbol	Limits	Unit
Supply voltage		Vcc	8.0	V
Power dissipation	BA7657S	Pd	1200	mW
	BA7657F		550	
	BH7659FS		800	
Operating temperature		Topr	-25~+75	${ }^{\circ} \mathrm{C}$
Storage temperature		Tstg	-55~+125	${ }^{\circ} \mathrm{C}$

※Deratings is done at $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (BA7657S), $5.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (BA7657F), $8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ (BA7659FS) above $\mathrm{Ta}=25^{\circ} \mathrm{C}$.

- Operating Range ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit
Supply voltage	Vcc	4.5	5.0	5.5	V

[^0]BA7657S/F
(Unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions			
Circuit current	ICC	20	35	50	mA				
〈Analog SW block〉							Vom	2.8	-

BA7657S/F

〈Input waveform〉

$※ 1 \mathrm{Vs}$ and pwH are variable. Vs and pwH are inter-related. See the characteristics diagram.
$※ 2 \mathrm{Vs}=130 \mathrm{~mW}$ and pwH are variable.
$※ 3 \mathrm{pwH}=1 \mu \mathrm{~s}$ and Vs are variable.

Period of horizontal synchronization signal

BA7657S/F

Fig. 1

BA7657S/F

Pin No.	Pin name	Reference potential	Equivalent circuit	Function
1 3 5 7 9 11	Red1 Input Green1 Input Blue1 Input Red2 Input Green2 Input Blue2 Input	3.7 V when selected OV when not selected		2-channel switching of R, G, and B signals. Select between: CTL: H input1 CTL: L input2
15 19 21	Blue output Green output Red output	2.0 V		Output pins for RGB signals. Insert resistance from 100 to 300Ω near the pins to suppress f peaks at high frequencies.
16	Control	$\begin{aligned} & \mathrm{H} \leqq 1.8 \mathrm{~V} \\ & \mathrm{~L} \leqq 1.2 \mathrm{~V} \end{aligned}$		CTL pins Select between: CTL: H input1 CTL: L input2
12 13 23 24	Vo1 input VD2 input HD2 input HD1 input	$\mathrm{H} \geqq 1.8 \mathrm{~V}$ $\mathrm{L} \leqq 1.2 \mathrm{~V}$		2-channel switching of VD and HD signals. Select between: CTL: H input1 CTL: L input2
14 22	Vo output HD output	$\begin{aligned} & \mathrm{VOH} \geqq 3.0 \mathrm{~V} \\ & \mathrm{VoL} \leqq 10.5 \mathrm{~V} \end{aligned}$		Output pins for vertical synchronization signal (VD) And horizontal synchronization signal (HD).

BA7657S/F

BA7657S/F

1) Analog SW block

Two channels of RGB signals can be switched.
I/O relations
IN1 can be selected when high-level voltage is applied to the CTL pin, and IN2 can be selected when low level voltage is applied.
2) Digital SW block

This block switches between two channels of HD and VD synchronization signals.
HD and VD synchronization signals are output for IN1 when high-level voltage is applied to the CTL pin, and these signals are output for IN2 when a low-level voltage is applied to the CTL pin.

Input			Output		
HD	VD	Sync on Green	HD	VD	Composite Sync
-	-	O	-	-	O
O	-	O	O	-	-
-	O	O	-	O	O
O	O	O	O	O	-
O	-	-	O	-	-
-	O	-	-	O	-
O	O	-	O	O	-

3) Synchronization signal separation block

This block separates composite signals (Sync on Green) and synchronization signals and outputs positive-electrode composite synchronization signals.
When an HD signal is being input, the synchronization signal detector operates and stops the synchronization signal separation circuit. A low-level output voltage is used for output.
The time at which the synchronization signal separation circuit will be stopped can be set using external time constants for the circuit detection pin.

-Application circuit

BA7657S/F

Fig. 2

- Reference data

Fig. 3 Frequency characteristic
BA7657S/F

Fig. 6 Minimum SYNC separation characteristic

BA7657 S/F

Fig. 4 Interchannel crosstalk

BA7657S/F

Fig. 7 Quiescent current vs. Temperature

Fig. 5 Input/output delay time vs. Temperature

BH7659FS

（Unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ ）

Parameter	Symbol	Min．	Typ．	Max．	Unit	Conditions
〈Entire device〉						
Circuit current	ICc	15	25	35	mA	－
Circuit current during power save	IPSV	7	14	22	mA	PS＝＂H＂
$\langle R, G, B$ video SW〉						
Voltage gain	GV	－1．0	－0．5	0	dB	$\mathrm{f}=10 \mathrm{MHz}$
Interchannel relative gain	\triangle Gvc	－0．5	0	0.5	dB	$\mathrm{f}=10 \mathrm{MHz}$
Interblock relative gain	\triangle GVB	－0．5	0	0.5	dB	$\mathrm{f}=10 \mathrm{MHz}$
Output dynamic range	Vom	2.6	－	－	VP－P	$\mathrm{f}=1 \mathrm{kHz}$
〈C－MOS analog SW〉						
On－resistance	Ron	－	200	400	Ω	$\mathrm{VIN}=2.5 \mathrm{~V}$
Interchannel ON resistance differential	$\triangle \mathrm{RoN}$	－	20	40	Ω	V IN $=2.5 \mathrm{~V}$
Interchannel cross talk	CT	－	－70	－55	dB	$\mathrm{f}=150 \mathrm{kHz}$
Transmission delay time	tD	－	20	－	ns	RL＝100 Ω ，CL＝50pF
〈Control block〉						
＂H＂level voltage	VH	3.5	－	－	V	－
＂L＂level voltage	VL	－	－	1.5	V	－

－Guaranteed design parameters

BH7659FS

（Unless otherwise noted， $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V}$ ）

Parameter	Symbol	Min．	Typ．	Max．	Unit	Conditions	
$\langle\mathrm{R} / \mathrm{G} / \mathrm{B}$ video SW〉							
Frequency characteristics 1	f 1	-3.0	0	+1.0	dB	$\mathrm{f}=50 \mathrm{MHz}$	
Frequency characteristics 2	f 2	-6.0	-3	-1.0	dB	$\mathrm{f}=250 \mathrm{MHz}$	
Interchannel relative frequency characteristics	$\Delta \mathrm{fc}$	-0.5	0	0.5	dB	$\mathrm{f}=50 \mathrm{MHz}$	
Interblock relative frequency characteristics	$\Delta \mathrm{fB}$	-0.5	0	0.5	dB	$\mathrm{f}=50 \mathrm{MHz}$	
Interchannel cross talk 1	CTC 1	-	-50	-35	dB	$\mathrm{f}=50 \mathrm{kHz}$	
Interchannel cross talk 2	CTC 2	-	-30	-15	dB	$\mathrm{f}=250 \mathrm{MHz}$	
Interblock cross talk 1	CTB 1	-	-50	-35	dB	$\mathrm{f}=50 \mathrm{MHz}$	
Interblock cross talk 2	CTB 2	-	-30	-15	dB	$\mathrm{f}=250 \mathrm{MHz}$	

Fig. 8

BH7659FS

Pin No.	Pin name	Reference potential	Equivalent circuit	Function
3 5 7 7 9 11	R chroma signal input pin A (RINA) G chroma signal input pin A (GINA) B chroma signal input pin A (BINA) R chroma signal input pin B (RINB) G chroma signal input pin B (GINB) B chroma signal input pin B (BINB)	3.5 V when selected OV when not selected		RGB signals are switched in two channels. When selected by SW, the DC potential is approximately 3.5 V , and when not selected, the DC potential is about 0 V .
27 29 31	B chroma signal input pin (BOUT) G chroma signal input pin (GOUT) R chroma signal input pin (ROUT)	1.85 V		Power save function is used when PSH pin is set to high level.
8 13	Power save input pin (PSH) Control input pin (CTL)	OV		PSH Pin Power save off $\leqq 1.5 \mathrm{~V}$ Power save on $\geqq 3.5 \mathrm{~V}$ CTL Pin Input $\mathrm{A} \geqq 3.5 \mathrm{~V}$ Input $\mathrm{B} \leqq 1.5 \mathrm{~V}$

BH7659FS

Pin No.	Reference potential name		Equivalent circuit	Function	
14	VD signal input pin A (VDINA) VD signal input pin B (VDINB) VD signal output pin (VDOUT)		SDA signal output pin (SDAIO) SDA signal input pin B (SDAIOB) SDA signal input pin A (SDAIOA)		

-Description of operations

BH7659FS

1) Analog $S W$ block
R, G, and B chroma signals are switched in two channels.
INA is selected by applying a high-level voltage to the CTL pin, and INB is selected by applying a low-level voltage.
When the power save pin (pin 8) is set to high level, the current to the SW block's output transistors is reduced to lower the circuit current.

Even during low power mode, signal switching can be performed normally as long as there is no drop in frequency characteristics.
2) CMOS analog SW block

SDA and SDC signals are switched via an $I^{2} C$ bus to handle two channels of $H D$ and VD synchronization signals, and to exchange information bidirectionally between a computer and a monitor.
The switching circuits used by this IC handle are configured as CMOS analog switches in order to handle $I^{2} \mathrm{C}$ BUS signals and to transmit input and output signals bidirectionally. (ON resistance: Ron 200Ω typ.)

-Application circuit

BH7659FS

Fig. 9

- Reference data

Fig. 10 Circuit current vs. Supply voltage

Fig. 11 interchannel crosstalk

Fig. 12 Frequency characteristics
-Cautions on use (1/2)

[BA7657S/F, BH7659FS]

1) Numbers and data in entries are representative design values and are not guaranteed values of the items.
2) Although we are confident in recommending the sample application circuits, carefully check their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics.
3) Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceed the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum ratings are exceeded to the LSI.
4) GND potential

Make the GND pin voltage such that it is the lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the GND pin, including transient phenomena.
5) Thermal design

Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use.
6) Shorts between pins and misinstallation

When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.
7) Operation in strong magnetic fields

Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.
[BA7657S/F]
8) External resistance for analog SW block

The frequency characteristics of analog switches vary according to the output load capacity.
Set an external resistance value of R0 to keep frequency characteristics as flat as possible.
9) Polarity of input coupling capacitor

When this IC is switched, variation is approximately 3.7 V when the input pin's DC voltage has been selected, but is 0 V when the input pin's DC voltage has not been selected.
Therefore, the input coupling capacitor's polarity should be set so as to avoid applying a reverse voltage to capacitors, whether the input pin's DC voltage has been selected or not.
10) High-frequency characteristics of input coupling capacitor

Since this IC handles signals at very high frequencies, when using an electrolytic capacitor as a coupling capacitor for input, be sure to insert high-frequency oriented ceramic capacitors (approximately $0.01 \mu \mathrm{~F}$) in parallel.
11) Layout of target board

Since this IC handles signals at very high frequencies, be sure to insert the power supply pin's decoupling capacitor close to the IC's power supply pin. Also, use as large a GND pattern as possible.
12) Switching speed

Since this IC changes the DC voltage of input pins when switching, some time is required for switching.
The amount of switching time can be determined by time constants that are in turn determined by the capacity of the coupling capacitor connected to the input pin, and the IC's internal input resistance.
When using the recommended input coupling capacitor whose capacitance is $47 \mu \mathrm{~F}$, the switching time is approximately 0.5 seconds.

- Cautions on use (2/2)

[BH7659FS]

13) External resistance for analog SW block

The frequency characteristics of analog switches vary according to the output load capacity.
Set an external resistance value of R0 to keep frequency characteristics as flat as possible.
14) Polarity of input coupling capacitor

When this IC is switched, variation is approximately 3.5 V when the input pin's DC voltage has been selected, but is 0 V when the input pin's DC voltage has not been selected. Therefore, the input coupling capacitor's polarity should be set so as to avoid applying a reverse voltage to capacitors, whether the input pin's DC voltage has been selected or not.
15) High frequency characteristics of input coupling capacitor

Since this IC handles signals at very high frequencies, when using an electrolytic capacitor as a coupling capacitor for input, be sure to insert high-frequency oriented ceramic capacitors (approximately $0.01 \mu \mathrm{~F}$) in parallel.
16) Layout of target board

Since this IC handles signals at very high frequencies, be sure to insert the power supply pin's decoupling capacitor close to the IC's power supply pin. Also, use as large a GND pattern as possible.

- Selection of order type

SOP24

<Tape and Reel information>

Tape	Embossed carrier tape
Quantity	2000 pcs
Direction of feed	E2 (The direction is the 1pin of product is at the upper left when you hold reel on the eft hand and you pul out the tape on the right hand)

SDIP24

<Packing information>

Container	Tube
Quantity	1000pcs
Direction of feed	Direction of products is fixed in a container tube.

©

SSOP-A32

<Dimension>

The contents described herein are correct as of August, 2008
The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD

- Any part of this application note must not be duplicated or copied without our permission.

Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.

- Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such
infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer
The products described herein utilize silicon as the main material.
The products described herein are not designed to be X ray proof

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

San Diego	TEL: +1-858-625-3630	FAX: +1-858-625-3670	Tianjin
Atlanta	TEL: +1-770-754-5972	FAX: +1-770-754-0691	Shanghai
Boston	TEL: +1-978-371-0382	FAX: +1-928-438-7164	Hangzhou
Chicago	TEL: +1-847-368-1006	FAX: +1-847-368-1008	Nanjing
Dallas	TEL: +1-469-287-5366	FAX: +1-469-362-7973	Ningbo
Denver	TEL: +1-303-708-0908	FAX: +1-303-708-0858	Qingdao
Detroit	TEL: +1-248-348-9920	FAX: +1-248-348-9942	Suzhou
Nashville	TEL: +1-615-620-6700	FAX: +1-615-620-6702	Wuxi
Mexico	TEL: +52-33-3123-2001	FAX: +52-33-3123-2002	Shenzhen
Duisseldorf	TEL: +49-2154-9210	FAX: +49-2154-921400	Dongguan
Munich	TEL: +49-8999-216168	FAX: +49-8999-216176	Fuzhou
Stuttgart	TEL: +49-711-7272-370	FAX: +49-711-7272-3720	Guangzhou
France	TEL: +33-1-5697-3060	FAX: +33-1-5697-3080	Huizhou
United Kingdom	TEL: +44-1-908-306700	FAX: +44-1-908-235788	Xiamen
Denmark	TEL: +45-3694-4739	FAX: +45-3694-4789	Zhuhai
Espoo	TEL: +358-9725-54491	FAX: +358-9-7255-4499	Hong Kong
Salo	TEL: +358-2-7332234	FAX: +358-2-7332237	Taipei
Oulu	TEL: +358-8-5372930	FAX: +358-8-5372931	Kaohsiung
Barcelona	TEL: +34-9375-24320	FAX: +34-9375-24410	Singapore
Hungary	TEL: +36-1-4719338	FAX: +36-1-4719339	Philippines
Poland	TEL: +48-22-5757213	FAX: +48-22-5757001	Thailand
Russia	TEL: +7-495-739-41-74	FAX: +7-495-739-41-74	Kuala Lumpur
Seoul	TEL: +82-2-8182-700	FAX: +82-2-8182-715	Penang
Masan	TEL: +82-55-240-6234	FAX: +82-55-240-6236	Kyoto
Dalian	TEL: +86-411-8230-8549	FAX: +86-411-8230-8537	Yokohama
Beijing	TEL: +86-10-8525-2483	FAX: +86-10-8525-2489	

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.
It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact your nearest sales office.

[^1]
[^0]: ※This product is not designed for protection against radioactive rays.

[^1]: Copyright © 2008 ROHM CO.,LTD.
 ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan
 TEL: +81-75-311-2121
 FAX : +81-75-315-0172

