BAV99W, BAV99RW

Dual Series Switching Diodes

The BAV99WT1G is a smaller package, equivalent to the BAV99LT1G.

Features

- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

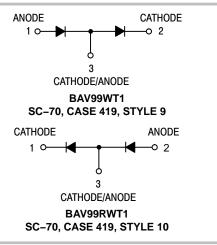
Suggested Applications

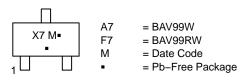
- ESD Protection
- Polarity Reversal Protection
- Data Line Protection
- Inductive Load Protection
- Steering Logic

MAXIMUM RATINGS (Each Diode)

Rating	Symbol	Value	Unit
Reverse Voltage	V _R	100	Vdc
Forward Current	١ _F	215	mAdc
Peak Forward Surge Current	I _{FM(surge)}	500	mAdc
Repetitive Peak Reverse Voltage	V _{RRM}	100	V
Average Rectified Forward Current (Note 1) (averaged over any 20 ms period)	I _{F(AV)}	715	mA
Repetitive Peak Forward Current	I _{FRM}	450	mA
Non-Repetitive Peak Forward Current $t = 1.0 \ \mu s$ $t = 1.0 \ ms$ $t = 1.0 \ s$	I _{FSM}	2.0 1.0 0.5	A

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.


ON Semiconductor®

www.onsemi.com

MARKING DIAGRAM

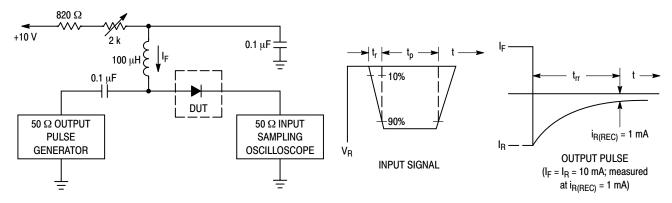
ORDERING INFORMATION

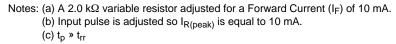
Device	Package	Shipping [†]
BAV99WT1G	SC–70 (Pb–Free)	3,000 / Tape & Reel
SBAV99WT1G	SC–70 (Pb–Free)	3,000 / Tape & Reel
BAV99RWT1G	SC–70 (Pb–Free)	3,000 / Tape & Reel
SBAV99RWT1G	SC-70 (Pb-Free)	3,000 / Tape & Reel
NSVBAV99WT3G	SC–70 (Pb–Free)	10,000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

BAV99W, BAV99RW

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board, (Note 1) T _A = 25°C Derate above 25°C	PD	200 1.6	mW mW/°C
Thermal Resistance Junction-to-Ambient	$R_{ hetaJA}$	625	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	PD	300 2.4	mW mW/°C
Thermal Resistance Junction-to-Ambient	R_{\thetaJA}	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-65 to +150	°C


ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Each Diode)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS	· · ·			
Reverse Breakdown Voltage $(I_{(BR)} = 100 \ \mu A)$	V _(BR)	100	-	Vdc
Reverse Voltage Leakage Current $(V_R = 100 \text{ Vdc})$ $(V_R = 25 \text{ Vdc}, T_J = 150^{\circ}\text{C})$ $(V_R = 70 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	I _R	- - -	1.0 30 50	μAdc
Diode Capacitance ($V_R = 0, f = 1.0 \text{ MHz}$)	C _D	_	1.5	pF
Forward Voltage $(I_F = 1.0 \text{ mAdc})$ $(I_F = 10 \text{ mAdc})$ $(I_F = 50 \text{ mAdc})$ $(I_F = 150 \text{ mAdc})$	V _F	- - - -	715 855 1000 1250	mVdc
Reverse Recovery Time (I _F = I _R = 10 mAdc, i _{R(REC)} = 1.0 mAdc) (Figure 1) R _L = 100 Ω	t _{rr}	_	6.0	ns
Forward Recovery Voltage $(I_F = 10 \text{ mA}, t_f = 20 \text{ ns})$	V _{FR}	_	1.75	V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.

2. Alumina = 0.4 \times 0.3 \times 0.024 in. 99.5% alumina.

Figure 1. Recovery Time Equivalent Test Circuit

BAV99W, BAV99RW

CURVES APPLICABLE TO EACH DIODE

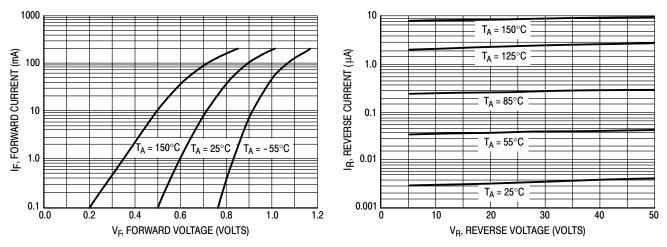


Figure 2. Forward Voltage

Figure 3. Leakage Current

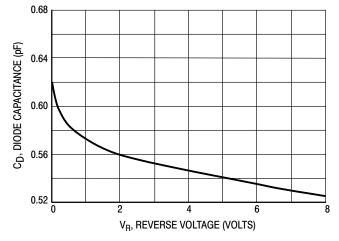
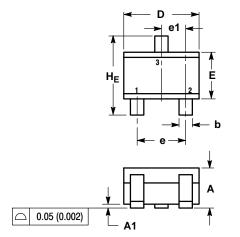
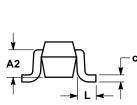
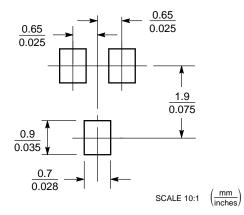




Figure 4. Capacitance

PACKAGE DIMENSIONS

SC-70 (SOT-323) CASE 419-04 ISSUE N

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.


	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	0.032	0.035	0.040
A1	0.00	0.05	0.10	0.000	0.002	0.004
A2	0.70 REF			0.028 REF		
b	0.30	0.35	0.40	0.012	0.014	0.016
С	0.10	0.18	0.25	0.004	0.007	0.010
D	1.80	2.10	2.20	0.071	0.083	0.087
Е	1.15	1.24	1.35	0.045	0.049	0.053
е	1.20	1.30	1.40	0.047	0.051	0.055
e1	0.65 BSC			0.026 BSC		
L	0.20	0.38	0.56	0.008	0.015	0.022
HE	2.00	2.10	2.40	0.079	0.083	0.095

STYLE 9: PIN 1. ANODE 2. CATHODE

3 CATHODE-ANODE

STYLE 10: PIN 1. CATHODE 2. ANODE 3. ANODE-CATHODE

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expen

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421-22-200-2010

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative