BC817W / BC818W

NPN Silicon Epitaxial Planar Transistors

for general purpose and switching applications

These transistors are subdivided into three groups -16, -25, -40 according to their current gain.

1.Base 2.Emitter 3.Collector SOT-323 Plastic Package

Absolute Maximum Ratings ($T_a = 25$ °C)

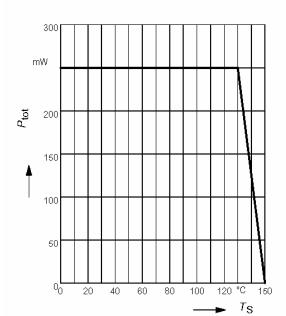
Parameter		Symbol	Value	Unit
Collector Base Voltage	BC817W BC818W	V _{CBO}	50 30	V
Collector Emitter Voltage	BC817W BC818W	V _{CEO}	45 25	V
Emitter Base Voltage		V_{EBO}	5	V
Collector Current		I _C	500	mA
Peak Collector Current		I _{CM}	1	А
Peak Base Current		I _{BM}	200	mA
Power Dissipation		P _{tot}	200	mW
Thermal Resistance, Junction to Ambient		$R_{ hetaJA}$	625 ¹⁾	K/W
Junction Temperature		TJ	150	°C
Storage Temperature Range		T _s	-65 to +150	°C

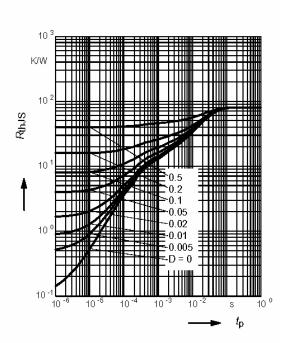
¹⁾ Transistor mounted on an FR4 printed-circuit board.

BC817W / BC818W

Characteristics at $T_{amb} = 25$ °C

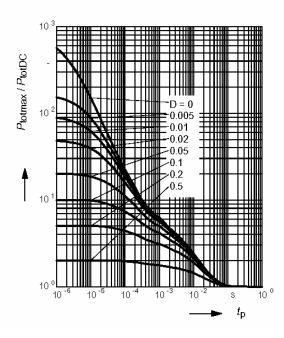
Parameter		Symbol	Min.	Max.	Unit
DC Current Gain at V _{CE} = 1 V, I _C = 100 mA					
	-16W -25W	h _{FE} h _{FE}	100 160	250 400	-
at $V_{CE} = 1 \text{ V, } I_{C} = 500 \text{ mA}$	-40W	h _{FE} h _{FE}	250 40	600 -	-
Collector Base Breakdown Voltage at $I_C = 10 \mu A$	BC817W BC818W	V _{(BR)CBO}	50 30		V
Collector Emitter Breakdown Voltage at I _C = 10 mA	BC817W BC818W	V _{(BR)CEO}	45 25	-	V
Emitter Base Breakdown Voltage at I _E = 10 μA		$V_{(BR)EBO}$	5	-	V
Collector Emitter Saturation Voltage at $I_C = 500$ mA, $I_B = 50$ mA		V _{CEsat}	-	0.7	V
Base Emitter Voltage at $I_C = 500$ mA, $V_{CE} = 1$ V		V_{BE}	-	1.2	V
Collector Cutoff Current at V_{CB} = 20 V at V_{CB} = 20 V, T_{J} = 150 °C		I _{CBO}	-	100 5	nΑ μΑ
Emitter Cutoff Current at $V_{EB} = 5 \text{ V}$		I _{EBO}	-	100	nA
Transition Frequency at $V_{CE} = 5 \text{ V}$, $I_C = 10 \text{ mA}$, $f = 100 \text{ MHz}$		f _⊤	100	-	MHz
Collector Capacitance at $V_{CB} = 10 \text{ V}$, $f = 1 \text{ MHz}$		C _c	-	5	pF



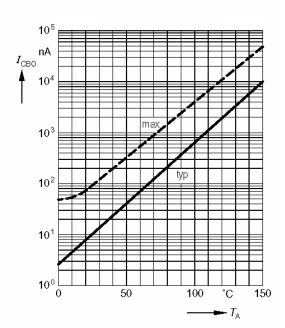


SEMTECH ELECTRONICS LTD.

Total power dissipation $P_{tot} = f(T_S)$



Permissible Pulse Load $R_{thJS} = f(t_p)$


Permissible Pulse Load

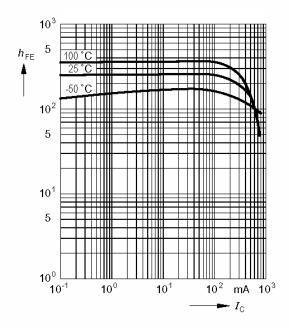
$$P_{\text{totmax}} / P_{\text{totDC}} = f(t_p)$$

Collector cutoff current $I_{CBO} = f(T_A)$

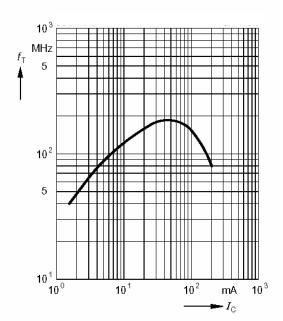
$$V_{\rm CBO}$$
 = 25 V

SEMTECH ELECTRONICS LTD.

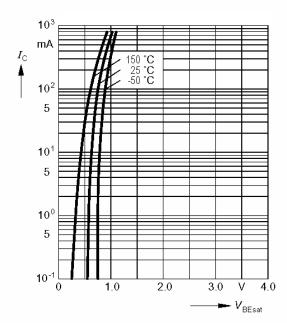
(Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)



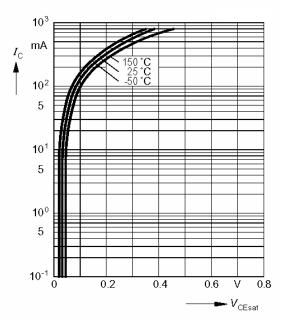
Dated: 13/02/2006


DC current gain $h_{\text{FE}} = f(I_{\text{C}})$

$$V_{CE} = 1V$$


Transition frequency $f_{\rm T} = f(I_{\rm C})$

$$V_{CE} = 5V$$


Base-emitter saturation voltage

$$I_{\rm C} = f(V_{\rm BEsat}), h_{\rm FE} = 10$$

Collector-emitter saturation voltage

$$I_{\rm C} = f(V_{\rm CEsat}), h_{\rm FE} = 10$$

SEMTECH ELECTRONICS LTD.

(Subsidiary of Sino-Tech International Holdings Limited, a company listed on the Hong Kong Stock Exchange, Stock Code: 724)

Dated: 13/02/2006