General Purpose Transistor

PNP Silicon

Features

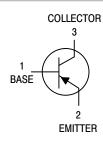
- NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V_{CEO}	-45	Vdc
Collector-Base Voltage	V _{CBO}	-60	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current – Continuous	Ic	-800	mAdc

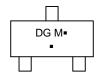
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Total Device Dissipation FR–5 Board (Note 1) T _A = 25°C	P_{D}	225	mW
Derate above 25°C		1.8	mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate (Note 2) T _A = 25°C	P _D	300	mW
Derate above 25°C		2.4	mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

- 1. FR-5 = $1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = $0.4 \times 0.3 \times 0.024$ in 99.5% alumina.

ON Semiconductor®


www.onsemi.com

SOT-23 CASE 318 STYLE 6

MARKING DIAGRAM

DG = Specific Device Code

M = Date Code*
■ Pb–Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

Device	Package	Shipping [†]		
BCW68GLT1G, NSVBCW68GLT1G	SOT-23 (Pb-Free)	3000 / Tape & Reel		
BCW68GLT3G	SOT-23 (Pb-Free)	10000 / Tape & Reel		

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage $(I_C = -10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	-45	_	-	Vdc
Collector–Emitter Breakdown Voltage ($I_C = -10 \mu Adc$, $V_{EB} = 0$)	V _{(BR)CES}	-60	_	_	Vdc
Emitter–Base Breakdown Voltage ($I_E = -10 \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	-5.0	-	-	Vdc
Collector Cutoff Current $(V_{CE}=-45 \text{ Vdc}, I_E=0)$ $(V_{CE}=-45 \text{ Vdc}, I_B=0, T_A=150^{\circ}\text{C})$	ICES		_ _	-20 -10	nAdc μAdc
Emitter Cutoff Current (V _{EB} = -4.0 Vdc, I _C = 0)	I _{EBO}	_	_	-20	nAdc
ON CHARACTERISTICS	•				
DC Current Gain $ \begin{aligned} &(I_C = -10 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc)} \\ &(I_C = -100 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc)} \\ &(I_C = -300 \text{ mAdc, } V_{CE} = -1.0 \text{ Vdc)} \end{aligned} $	h _{FE}	120 160 60	- - -	400 _ _	-
Collector–Emitter Saturation Voltage (I _C = –500 mAdc, I _B = –50 mAdc)	V _{CE(sat)}	_	-	-0.7	Vdc
Base–Emitter Saturation Voltage (I _C = –500 mAdc, I _B = –50 mAdc)	V _{BE(sat)}	-	_	-2.0	Vdc
SMALL-SIGNAL CHARACTERISTICS	•			•	
Current–Gain – Bandwidth Product ($I_C = -20 \text{ mAdc}$, $V_{CE} = -10 \text{ Vdc}$, $f = 100 \text{ MHz}$)	f⊤	100	_	-	MHz
Output Capacitance $(V_{CB}=-10 \text{ Vdc}, I_E=0, f=1.0 \text{ MHz})$	C _{obo}	-	_	18	pF
Input Capacitance (V_{EB} = -0.5 Vdc, I_C = 0, f = 1.0 MHz)	C _{ibo}	-	-	105	pF
Noise Figure (I _C = -0.2 mAdc, V _{CE} = -5.0 Vdc, R _S = 1.0 k Ω , f = 1.0 kHz, BW = 200 Hz)	N _F	-	-	10	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

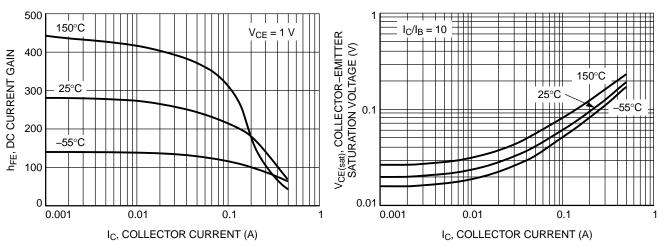


Figure 1. DC Current Gain vs. Collector Current

Figure 2. Collector Emitter Saturation Voltage vs. Collector Current

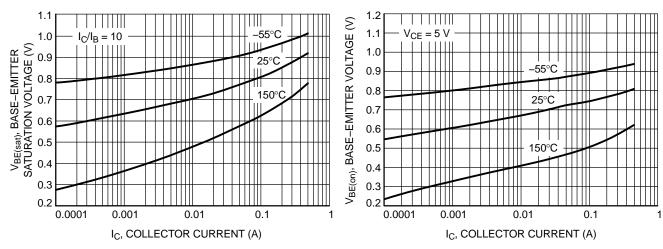


Figure 3. Base Emitter Saturation Voltage vs.
Collector Current

Figure 4. Base Emitter Voltage vs. Collector
Current

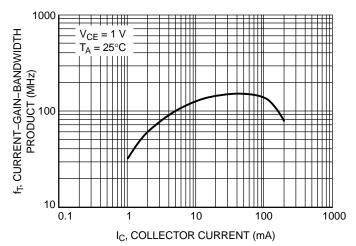


Figure 5. Current Gain Bandwidth Product vs. Collector Current

TYPICAL CHARACTERISTICS

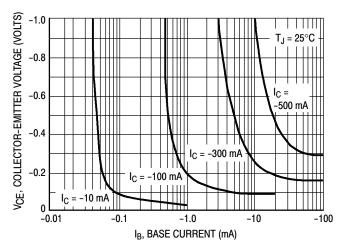


Figure 6. Saturation Region

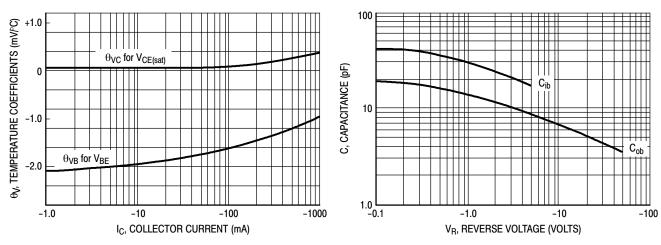
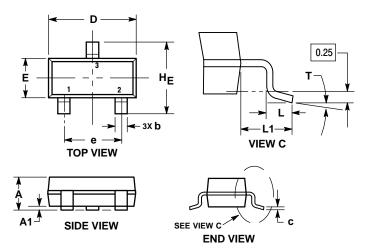



Figure 7. Temperature Coefficients

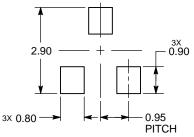
Figure 8. Capacitances

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AR**

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- CONTROLLING DIMENSION: MILLIMETERS.

 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.


 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
- PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0°		10°	0°		10°

STYLE 6: PIN 1. BASE

- **EMITTER**
- COLLECTOR

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor and war trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.nsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products period arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor way rilicense under its patent rights or others. ON Semiconductor products are out designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications application and bold ON Semiconductor products are applications against all claims, costs damages, affiliates, and distributors against all claims, costs damages, affiliates, and distributors against all claims, costs damages. application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050

N. American Technical Support: 800-282-9855 Toll Free

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative