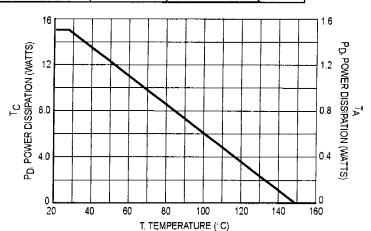
20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

Complementary Plastic Silicon Power Transistors

... designed for low power audio amplifier and low-current, high speed switching applications.


- High Collector–Emitter Sustaining Voltage —
 VCEO(sus) = 80 Vdc (Min) BD789, BD790
 = 100 Vdc (Min) BD791, BD792
- High DC Current Gain @ I_C = 200 mAdc hFE = 40-250
- Low Collector–Emitter Saturation Voltage —
 VCE(sat) = 0.5 Vdc (Max) @ IC = 500 mAdc
- High Current Gain Bandwidth Product fT = 40 MHz (Min) @ IC = 100 mAdc)

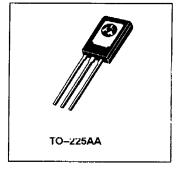
*MAXIMUM RATINGS

Rating	Symbol	BD789 BD790	BD791 BD792	Unit
Collector–Emitter Voltage	VCEO	80	100	Vdc
Collector-Base Voltage	VCB	80	100	Vdc
Emitter-Base Voltage	VEBO	6.0		Vdc
Collector Current Continuous Peak	lc	4.0 8.0		Adc
Base Current	IB	1.0		Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	15 0.12		Watts W/°C
Operating and Storage Junction Temperature Range	T _J ,T _{stg}	-65 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R ₀ JC	8.34	°C/W

NJ Semi-Conductors reserves the right to change test conditions, parameters limits and package dimensions without notice information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.


TELEPHONE: (973) 376-2922 (212) 227-6005

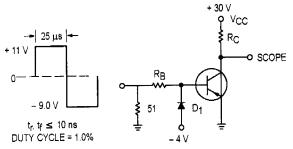
BD789

BD791^{*} BD790

*Motorola Preferred Device

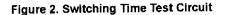
4 AMPERE
POWER TRANSISTORS
COMPLEMENTARY
SILICON
80, 100 VOLTS
15 WATTS

Quality Semi-Conductors


BD789 BD791 BD790 BD792

*ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
FF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (1) (I _C = 10 mAdc, I _B = 0)	BD789, BD790 BD791, BD792	VCEO(sus)	80 100		Vdc
Collector Cutoff Current (V _{CE} = 40 Vdc, I _B = 0) (V _{CE} = 50 Vdc, I _B = 0)	BD789, BD790 BD791, BD792	ICEO		100 100	μAdc
Collector Cutoff Current (VCE = 80 Vdc, VBE(off) = 1.5 Vdc) (VCE = 100 Vdc, VBE(off) = 1.5 Vdc) (VCE = 40 Vdc, VBE(off) = 1.5 Vdc, T _C = 125°C) (VCE = 50 Vdc, VBE(off) = 1.5 Vdc, T _C = 125°C)	BD789, BD790 BD791, BD792 BD789, BD790 BD791, BD792	CEX	 	1.0 1.0 0.1 0.1	μAdc mAdc
Emitter Cutoff Current (VEB = 6.0 Vdc, IC = 0)		^I EBO		1.0	μAdc
ON CHARACTERISTICS (1)				,	
DC Current Gain (I _C = 200 mAdc, V _{CE} = 3 0 Vdc) (I _C = 1.0 Adc, V _{CE} = 3.0 Vdc) (I _C = 2.0 Adc, V _{CE} = 3.0 Vdc) (I _C = 4.0 Adc, V _{CE} = 3.0 Vdc)		hFE	40 20 10 5.0	250 — — —	
Collector Emitter Saturation Voltage (I _C = 500 mAdc, I _B = 50 mAdc) (I _C = 1.0 Adc, I _B = 100 mAdc) (I _C = 2.0 Adc, I _B = 200 mAdc) (I _C = 4.0 Adc, I _B = 800 mAdc)		VCE(sat)	_ _ _ _	0.5 1.0 2.5 3.0	Vdc
Base-Emitter Saturation Voltage (I _C = 2.0 Adc, I _B = 200 mAdc)		V _{BE(sat)}		1.8	Vdc
Base-Emitter On Voltage (I _C = 200 mAdc, V _{CE} = 3.0 Vdc)		V _{BE(on)}		1.5	Vdc
DYNAMIC CHARACTERISTICS					· · · · · · · · · · · · · · · · · · ·
Current—Gain — Bandwidth Product (I _C = 100 mAdc, V _{CE} = 10 Vdc, f = 10 MHz)		fŢ	40	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _C = 0, f = 0.1 MHz)	BD789, BD791 BD790, BD792	C _{ob}		50 70	pF
Small–Signal Current Gain (IC = 200 mAdc, VCE = 10 Vdc, f = 1.0 kHz)		h _{fe}	10	_	_


^{*} Indicates JEDEC Registered Data.

⁽¹⁾ Pulse Test: Pulse $\overline{\text{Width}} \leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2.0\%$.

 R_B and R_C varied to obtain desired current levels

D1 MUST BE FAST RECOVERY TYPE, eg
MBR340 USED ABOVE IB ≈ 100 mA
MSD6100 USED BELOW IB ≈ 100 mA
FOR PNP TEST CIRCUIT, REVERSE ALL POLARITIES.

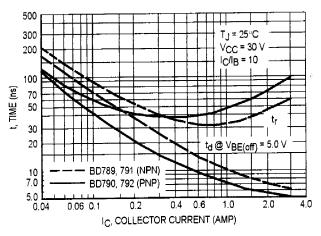


Figure 3. Turn-On Time