BS170

DMOS Transistors (N-Channel)

$\begin{array}{c} \textbf{TO-92} \\ \hline 131 (4.6) \\ \hline 097 \\ \hline 181 (4.6) \\ \hline 097 \\ \hline 181 (4.6) \\ \hline 097 \\ \hline 097 \\ \hline 097 \\ \hline 097 \\ \hline 098 (2.5) \\ \hline 0 \\ \hline 0$

Dimensions in inches and (millimeters)

FEATURES

- High input impedance
 High-speed switching
- Angh-speed switching
 No minority carrier storage time
- Rominonty camer storage time
 CMOS logic compatible input
- No thermal runaway
- No inermal runaway
 No occordory brookd
- No secondary breakdown

MECHANICAL DATA

Case: TO-92 Plastic Package **Weight:** approx. 0.18 g On special request, this transistor is also manufactured in the pin configuration TO-18.

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

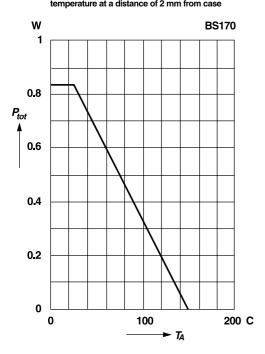
Ratings at 25 °C ambient temperature unless otherwise specified

	Symbol	Value	Unit	
Drain-Source Voltage	V _{DSS}	60	V	
Drain-Gate Voltage	V _{DGS}	60	V	
Gate-Source Voltage (pulsed)	V _{GS}	± 20	V	
Drain Current (continuous)	I _D	300	mA	
Power Dissipation at $T_{amb} = 25 \text{ °C}$	P _{tot}	0.831)	W	
Junction Temperature	Tj	150	°C	
Storage Temperature Range	T _s	-65 to +150	°C	
¹⁾ Valid provided that leads are kept at ambient temp	perature at a distance of 2 mn	n from case.		

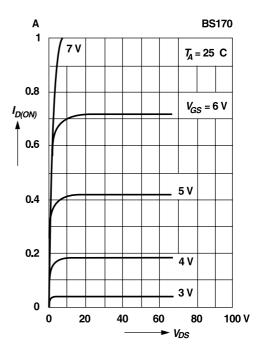
Inverse Diode

	Symbol	Value	Unit
Max. Forward Current (continuous) at T _{amb} = 25 °C	l _F	0.5	A
Forward Voltage Drop (typ.) at $V_{GS} = 0$, $I_F = 0.5$ A, $T_j = 25$ °C	V _F	0.85	V

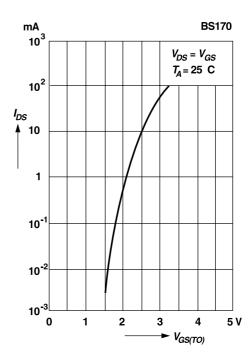
BS170


ELECTRICAL CHARACTERISTICS

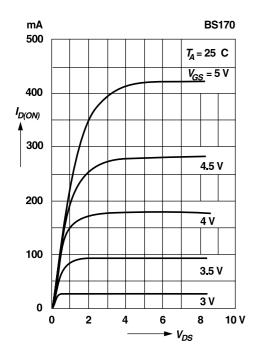
	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage at $I_D = 100 \ \mu$ A, $V_{GS} = 0$	V _(BR) DSS	60	80	-	V
Gate Threshold Voltage at $V_{GS} = V_{DS}$, $I_D = 1 \text{ mA}$	V _{GS(th)}	1.0	2	3.0	V
Gate-Body Leakage Current at V_{GS} = 15 V, V_{DS} = 0	I _{GSS}	-	-	10	nA
Drain Cutoff Current at V_{DS} = 25 V, V_{GS} = 0	I _{DSS}	-	-	0.5	μA
Drain-Source ON Resistance at V_{GS} = 10 V, I_D = 0.2 A	R _{DS(ON)}	-	3.5	5.0	Ω
Thermal Resistance Junction to Ambient Air	R _{thJA}	-	-	150 ¹⁾	K/W
Forward Transconductance at V_{DS} = 10 V, I_D = 0.2 A, f = 1 MHz	g _m	-	200	-	mS
Input Capacitance at V_{DS} = 10 V, V_{GS} = 0, f = 1 MHz	C _{iss}	-	30	-	pF
Switching Times at V _{GS} = 10 V, R_D = 100 Ω					
Turn-On Time Turn-Off Time	t _{on} t _{off}		5 15	-	ns ns
¹⁾ Valid provided that leads are kept at ambient ter	mperature at a dis	tance of 2 m	nm from case.		



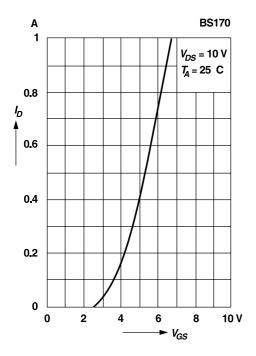
RATINGS AND CHARACTERISTIC CURVES BS170


Admissible power dissipation versus temperature Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

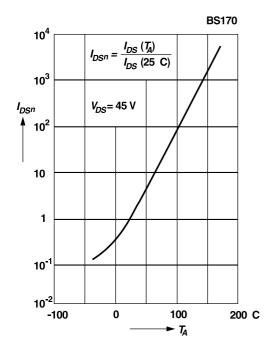
Output characteristics Pulse test width 80 ms; pulse duty factor 1%

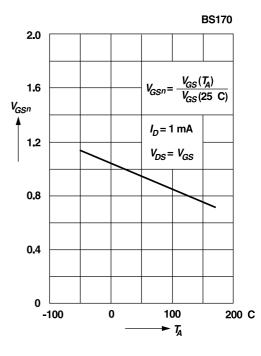


Drain-source current versus gate threshold voltage

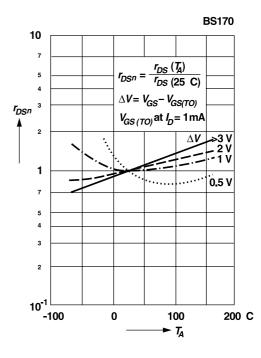

GENERAL SEMICONDUCTOR[®]

Saturation characteristics Pulse test width 80 ms; pulse duty factor 1%

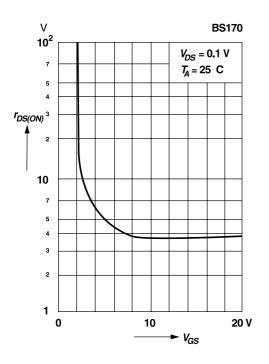



RATINGS AND CHARACTERISTIC CURVES BS170

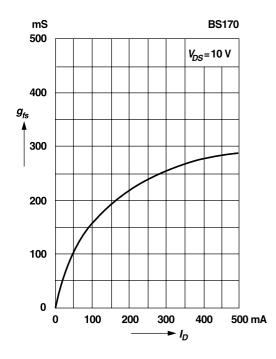
Drain current versus gate-source voltage Pulse test width 80 ms; pulse duty factor 1%

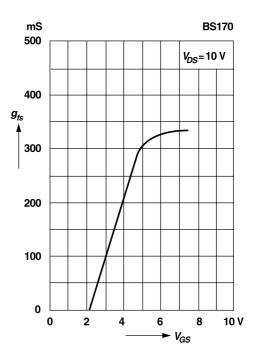

Normalized drain-source current versus temperature

Normalized gate-source voltage versus temperature

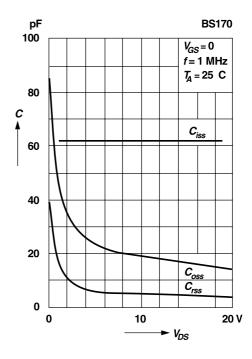

Normalized drain-source resistance versus temperature

GENERAL SEMICONDUCTOR[®]


RATINGS AND CHARACTERISTIC CURVES BS170


Drain-source resistance versus gate-source voltage

Transconductance versus drain current


Pulse test width 80 ms; pulse duty factor 1%

Transconductance versus gate-source voltage Pulse test width 80 ms; pulse duty factor 1%

Capacitance versus drain-source voltage

GENERAL SEMICONDUCTOR[®]