## Designer's ${ }^{\text {TM }}$ Data Sheet SWITCHMODETM <br> NPN Bipolar Power Transistor For Switching Power Supply Applications

The BUL147/BUL147F have an applications specific state-of-the-art die designed for use in electric fluorescent lamp ballasts to 180 Watts and in Switchmode Power supplies for all types of electronic equipment. These high-voltage/high-speed transistors offer the following:

- Improved Efficiency Due to Low Base Drive Requirements:
- High and Flat DC Current Gain
— Fast Switching
- No Coil Required in Base Circuit for Turn-Off (No Current Tail)
- Parametric Distributions are Tight and Consistent Lot-to-Lot
- Two Package Choices: Standard TO-220 or Isolated TO-220
- BUL147F, Isolated Case 221D, is UL Recognized to 3500 VRMS: File \#E69369


## MAXIMUM RATINGS

| Rating | Symbol | BUL147 | BUL147F | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Collector-Emitter Sustaining Voltage | $\mathrm{V}_{\text {CEO }}$ | 400 |  | Vdc |
| Collector-Emitter Breakdown Voltage | $\mathrm{V}_{\text {CES }}$ | 700 |  | Vdc |
| Emitter-Base Voltage | $\mathrm{V}_{\text {EBO }}$ | 9.0 |  | Vdc |
| $\begin{aligned} \hline \text { Collector Current } & \text { - Continuous } \\ & -\operatorname{Peak}(1) \end{aligned}$ | $\begin{gathered} \hline \text { IC } \\ \text { ICM } \end{gathered}$ | $\begin{aligned} & 8.0 \\ & 16 \end{aligned}$ |  | Adc |
| Base Current - Continuous -Peak(1) | $\begin{gathered} \hline \text { IB } \\ \text { IBM } \end{gathered}$ | $\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$ |  | Adc |
| RMS Isolated Voltage(2) Test No. 1 Per Fig. 22a <br> (for 1 sec, R.H. <30\%, Test No. 2 Per Fig. 22b <br> $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ ) Test No. 3 Per Fig. 22c | VISOL | - | $\begin{aligned} & 4500 \\ & 3500 \\ & 1500 \end{aligned}$ | Volts |
| $\begin{array}{ll}\text { Total Device Dissipation } & \left(\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}\right) \\ \text { Derate above } 25^{\circ} \mathrm{C} & \end{array}$ | $\mathrm{PD}_{\mathrm{D}}$ | $\begin{aligned} & 125 \\ & 1.0 \end{aligned}$ | $\begin{gathered} \hline 45 \\ 0.36 \end{gathered}$ | Watts W/ ${ }^{\circ} \mathrm{C}$ |
| Operating and Storage Temperature | $\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$ | -65 | 150 | ${ }^{\circ} \mathrm{C}$ |

THERMAL CHARACTERISTICS

| Rating | Symbol | BUL44 | BUL44F | Unit |
| :---: | :---: | :---: | :---: | :---: |
| Thermal Resistance — Junction to Case | $R_{\theta J C}$ | 1.0 | 2.78 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| - Junction to Ambient | $\mathrm{R}_{\theta \mathrm{JA}}$ | 62.5 | 62.5 |  |
| Maximum Lead Temperature for Soldering | $\mathrm{T}_{\mathrm{L}}$ | 260 |  | ${ }^{\circ} \mathrm{C}$ |
| Purposes: $1 / 8^{\prime \prime}$ from Case for 5 Seconds |  |  |  |  |

## BUL147* BUL147F*

*Motorola Preferred Device

## POWER TRANSISTOR 8.0 AMPERES 700 VOLTS 45 and 125 WATTS



BUL147 CASE 221A-06 TO-220AB


BUL147F
CASE 221D-02 ISOLATED TO-220 TYPE UL RECOGNIZED

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Characteristic | Symbol | Min | Typ | Max |
| :---: | :---: | :---: | :---: | :---: |

## OFF CHARACTERISTICS

| Collector-Emitter Sustaining Voltage ( $\mathrm{l} \mathrm{C}=100 \mathrm{~mA}, \mathrm{~L}=25 \mathrm{mH}$ ) | $\mathrm{V}_{\mathrm{CEO}}$ (sus) | 400 | - | - | Vdc |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CE}}=$ Rated $\mathrm{V}_{\mathrm{CEO}}$, $\mathrm{I}_{\mathrm{B}}=0$ ) | ICEO | - | - | 100 | $\mu \mathrm{Adc}$ |
| $\begin{aligned} & \hline \text { Collector Cutoff Current }\left(\mathrm{V}_{\mathrm{CE}}=\text { Rated } \mathrm{V}_{\mathrm{CES}}, \mathrm{~V}_{\mathrm{EB}}=0\right) \\ &\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ &\left(\mathrm{V}_{\mathrm{CE}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{EB}}=0\right)\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \end{aligned}$ | ICES | - | - | $\begin{aligned} & 100 \\ & 500 \\ & 100 \end{aligned}$ | $\mu \mathrm{Adc}$ |
| Emitter Cutoff Current ( $\left.\mathrm{V}_{\mathrm{EB}}=9.0 \mathrm{Vdc}, \mathrm{I} \mathrm{C}=0\right)$ | IEBO | - | - | 100 | $\mu \mathrm{Adc}$ |

(1) Pulse Test: Pulse Width $=5.0 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.
(2) Proper strike and creepage distance must be provided.

Designer's and SWITCHMODE are trademarks of Motorola, Inc.
Designer's Data for "Worst Case" Conditions - The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

Preferred devices are Motorola recommended choices for future use and best overall value.
REV 1

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

| Characteristic | Symbol | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ON CHARACTERISTICS |  |  |  |  |  |
| $\begin{array}{ll} \hline \text { Base-Emitter Saturation Voltage } & \left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}\right) \\ & \left(\mathrm{I} \mathrm{C}=4.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.9 \mathrm{Adc}\right) \\ \hline \end{array}$ | $\mathrm{V}_{\mathrm{BE}}$ (sat) |  | $\begin{aligned} & \hline 0.82 \\ & 0.92 \end{aligned}$ | $\begin{gathered} \hline 1.1 \\ 1.25 \end{gathered}$ | Vdc |
| Collector-Emitter Saturation Voltage $\begin{array}{ll} \left(I_{C}=2.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{Adc}\right) & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.9 \mathrm{Adc}\right) & \left(T_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ \hline \end{array}$ | $\mathrm{V}_{\text {CE }}$ (sat) | - | $\begin{gathered} 0.25 \\ 0.3 \\ 0.35 \\ 0.35 \end{gathered}$ | $\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.7 \\ & 0.8 \end{aligned}$ | Vdc |
| DC Current Gain $\begin{array}{lr} \hline\left(I_{C}=1.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) & \left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) & \\ \hline \end{array}$ | $\mathrm{h}_{\text {FE }}$ | $\begin{aligned} & 14 \\ & \hline 8.0 \\ & 7.0 \\ & 10 \\ & 10 \end{aligned}$ | $\begin{aligned} & \overline{30} \\ & 12 \\ & 11 \\ & 18 \\ & 20 \end{aligned}$ | 34 - - - | - |

## DYNAMIC CHARACTERISTICS

| Current Gain Bandwidth ( $\mathrm{l}_{\mathrm{C}}=0.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}$ ) |  |  |  | ${ }_{\text {f }}$ | - | 14 | - | MHz |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Output Capacitance ( $\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}$ ) |  |  |  | $\mathrm{C}_{\text {ob }}$ | - | 100 | 175 | pF |
| Input Capacitance ( $\mathrm{V}_{\mathrm{EB}}=8.0 \mathrm{~V}$ ) |  |  |  | $\mathrm{C}_{\text {ib }}$ | - | 1750 | 2500 | pF |
| Dynamic Saturation Voltage: Determined $1.0 \mu \mathrm{~s}$ and $3.0 \mu \mathrm{~s}$ respectively after rising lB1 reaches $90 \%$ of final lB1 (see Figure 18) | $\begin{aligned} & (\mathrm{I} \mathrm{C}=2.0 \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{B} 1}=200 \mathrm{mAdc} \\ & \left.\mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right) \end{aligned}$ | $1.0 \mu \mathrm{~s}$ | $\left(\mathrm{T} \mathrm{C}=125^{\circ} \mathrm{C}\right.$ ) | $\mathrm{V}_{\mathrm{CE}}$ (dsat) | - | $\begin{aligned} & 3.0 \\ & 5.5 \end{aligned}$ |  | Volts |
|  |  | 3.0 s | $\left(\mathrm{T} \mathrm{C}=125^{\circ} \mathrm{C}\right)$ |  | - | $\begin{aligned} & 0.8 \\ & 1.4 \end{aligned}$ | - |  |
|  | $\begin{aligned} & (\mathrm{IC}=5.0 \mathrm{Adc} \\ & \mathrm{I}_{\mathrm{B} 1}=0.9 \mathrm{Adc} \\ & \left.\mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right) \end{aligned}$ | $1.0 \mu \mathrm{~s}$ | $\left(\mathrm{T} \mathrm{C}=125^{\circ} \mathrm{C}\right)$ |  | - | $\begin{array}{r} 3.3 \\ 8.5 \\ \hline \end{array}$ | - |  |
|  |  | 3.0 s | ( $\mathrm{T} \mathrm{C}=125^{\circ} \mathrm{C}$ ) |  | - | 0.4 1.0 | - |  |

SWITCHING CHARACTERISTICS: Resistive Load (D.C. $\leq 10 \%$, Pulse Width $=20 \mu \mathrm{~s}$ )

| Turn-On Time | $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=2.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{Adc}\right. \\ & \left.\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right) \end{aligned}$ | $\begin{aligned} & \left(\mathrm{T} \mathrm{C}=125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \end{aligned}$ | ton |  | $\begin{aligned} & 200 \\ & 190 \end{aligned}$ | 350 - | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Turn-Off Time |  |  | $\mathrm{t}_{\text {off }}$ |  | 1.0 1.6 | 2.5 - | $\mu \mathrm{s}$ |
| Turn-On Time | $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=4.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.9 \mathrm{Adc}\right. \\ & \left.\mathrm{I}_{\mathrm{B} 1}=2.25 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right) \end{aligned}$ | $\left(\mathrm{T} \mathrm{C}=125^{\circ} \mathrm{C}\right)$ | $\mathrm{t}_{\text {On }}$ | - | $\begin{gathered} 85 \\ 100 \end{gathered}$ | $150$ | ns |
| Turn-Off Time |  |  | $\mathrm{t}_{\text {off }}$ | - | 1.5 2.0 | 2.5 | $\mu \mathrm{S}$ |

SWITCHING CHARACTERISTICS: Inductive Load (V $\mathrm{V}_{\text {clamp }}=300 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~L}=200 \mu \mathrm{H}$ )

| Fall Time | $\begin{aligned} & \left(\mathrm{IC}=2.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.2 \mathrm{Adc}\right. \\ & \left.\mathrm{I}_{\mathrm{B} 2}=1.0 \mathrm{Adc}\right) \end{aligned}$ | $\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$ | tfi |  | $\begin{aligned} & 100 \\ & 120 \end{aligned}$ | 180 - | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Storage Time |  | $\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$ | $\mathrm{t}_{\text {si }}$ |  | $\begin{aligned} & 1.3 \\ & 1.9 \end{aligned}$ | 2.5 | $\mu \mathrm{s}$ |
| Crossover Time |  | $\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$ | $\mathrm{t}_{\mathrm{c}}$ |  | $\begin{aligned} & 210 \\ & 230 \end{aligned}$ | 350 - | ns |
| Fall Time | $\begin{aligned} & \left(\mathrm{I} \mathrm{C}=4.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.9 \mathrm{Adc}\right. \\ & \left.\mathrm{I}_{\mathrm{B} 2}=2.25 \mathrm{Adc}\right) \end{aligned}$ | $\left(\mathrm{T} C=125^{\circ} \mathrm{C}\right)$ | tfi |  | $\begin{gathered} 80 \\ 100 \end{gathered}$ | $150$ | ns |
| Storage Time |  | $\left(\mathrm{T}^{\text {C }}=125^{\circ} \mathrm{C}\right)$ | $\mathrm{t}_{\text {si }}$ |  | $\begin{aligned} & 1.6 \\ & 2.1 \end{aligned}$ | 3.2 - | $\mu \mathrm{s}$ |
| Crossover Time |  | $\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$ | $\mathrm{t}_{\mathrm{C}}$ | - | $\begin{aligned} & 170 \\ & 200 \end{aligned}$ | 300 | ns |
| Fall Time | $\begin{aligned} & \left(\mathrm{I} \mathrm{C}=4.5 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.9 \mathrm{Adc}\right. \\ & \left.\mathrm{I}_{\mathrm{B} 2}=0.9 \mathrm{Adc}\right) \end{aligned}$ | $\left(\mathrm{T}^{\text {C }}=125^{\circ} \mathrm{C}\right)$ | tfi | 60 | $\overline{150}$ | 180 | ns |
| Storage Time |  | ( $\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$ ) | $\mathrm{t}_{\text {si }}$ | 2.6 | - 4.3 | 3.8 - | $\mu \mathrm{s}$ |
| Crossover Time |  | $\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$ | $\mathrm{t}_{\mathrm{c}}$ | - | $\begin{aligned} & 200 \\ & 330 \\ & \hline \end{aligned}$ | 350 - | ns |



Figure 1. DC Current Gain @ 1 Volt


Figure 3. Collector Saturation Region


Figure 5. Base-Emitter Saturation Region


Figure 2. DC Current Gain @ 5 Volts


Figure 4. Collector-Emitter Saturation Voltage


Figure 6. Capacitance

TYPICAL SWITCHING CHARACTERISTICS
(IB2 = IC/2 for all switching)


Figure 7. Resistive Switching, ton


Figure 9. Inductive Storage Time, $\mathbf{t}_{\mathbf{s i}}$

${ }^{\text {I }} \mathrm{C}$, COLLECTOR CURRENT (AMPS)
Figure 11. Inductive Switching, $\mathrm{t}_{\mathrm{C}}$ and $\mathrm{t}_{\mathrm{f}}$ $I_{C} / I_{B}=5$


Figure 8. Resistive Switching, toff


Figure 10. Inductive Storage Time, $\mathbf{t}_{\mathbf{S i}}\left(\mathrm{h}_{\mathrm{FE}}\right)$

${ }^{\text {I }}$ C, COLLECTOR CURRENT (AMPS)
Figure 12. Inductive Switching, $\mathrm{t}_{\mathbf{c}}$ and $\mathrm{t}_{\mathrm{f}}$ $I_{C} / I_{B}=10$

## TYPICAL SWITCHING CHARACTERISTICS <br> (IB2 = IC/2 for all switching)



Figure 13. Inductive Fall Time


Figure 14. Inductive Crossover Time

GUARANTEED SAFE OPERATING AREA INFORMATION


Figure 15. Forward Bias Safe Operating Area


Figure 17. Forward Bias Power Derating


Figure 16. Reverse Bias Switching Safe Operating Area
There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C}-V_{C E}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on $\mathrm{T}_{\mathrm{C}}$ $=25^{\circ} \mathrm{C} ; \mathrm{TJ}_{(\mathrm{pk})}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to $10 \%$ but must be derated when $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown in Figure 15 may be found at any case temperature by using the appropriate curve on Figure 17. $T_{J(p k)}$ may be calculated from the data in Figure 20 and 21. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base-to-emitter junction re-verse-biased. The safe level is specified as a reverse-biased safe operating area (Figure 16). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.


TIME
Figure 18. Dynamic Saturation Voltage Measurements


Figure 19. Inductive Switching Measurements


Table 1. Inductive Load Switching Drive Circuit


Figure 20. Typical Thermal Response ( $\left.Z_{\theta J C}(t)\right)$ for BUL147


Figure 21. Typical Thermal Response ( $\mathbf{Z}_{\theta \mathrm{JC}}(\mathrm{t})$ ) for BUL147F

## TEST CONDITIONS FOR ISOLATION TESTS*



## MOUNTING INFORMATION**



Figure 23a. Screw-Mounted


Figure 23b. Clip-Mounted

Figure 23. Typical Mounting Techniques for Isolated Package

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in • Ibs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of $20 \mathrm{in} \cdot \mathrm{lbs}$ will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted $4-40$ screws indicate that the screw slot fails between 15 to $20 \mathrm{in} \cdot \mathrm{lbs}$ without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, Motorola does not recommend exceeding 10 in • lbs of mounting torque under any mounting conditions.

[^0]
## PACKAGE DIMENSIONS




#### Abstract

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and $(\triangle)$ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.


How to reach us:
USA / EUROPE: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki,
6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298


[^0]:    ** For more information about mounting power semiconductors see Application Note AN1040.

