Designer's[™] Data Sheet NPN Silicon Power Transistor High Voltage SWITCHMODE[™] Series

Designed for use in electronic ballast (light ballast) and in Switchmode Power supplies up to 50 Watts. Main features include:

• Improved Efficiency Due to:

- Low Base Drive Requirements (High and Flat DC Current Gain hFE)
- Low Power Losses (On–State and Switching Operations)
- Fast Switching: $t_{fi} = 100 \text{ ns}$ (typ) and $t_{si} = 3.2 \text{ }\mu\text{s}$ (typ)

@ I_C = 2.0 A, I_{B1} = I_{B2} = 0.4 A

Full Characterization at 125°C

MAXIMUM RATINGS

- Tight Parametric Distributions Consistent Lot-to-Lot
- BUL45F, Case 221D, is UL Recognized at 3500 V_{RMS}: File #E69369

Rating	Symbol	BUL45	BUL45F	Unit				
Collector–Emitter Sustaining Voltage	VCEO	40	00	Vdc				
Collector–Emitter Breakdown Voltage	VCES	70	Vdc					
Emitter-Base Voltage	VEBO	9.	0	Vdc				
Collector Current — Continuous — Peak(1)	IC ICM	-	BUL45F 400 700 9.0 5.0 10 2.0 4500 3500 1500 35 0.28 5	Adc				
Base Current	ΙB	2.	0	Adc				
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	VISOL		3500	Volts				
Total Device Dissipation $(T_C = 25^{\circ}C)$ Derate above $25^{\circ}C$	PD	75 0.6		Watts W/°C				
Operating and Storage Temperature	TJ, Tstg	– 65 t	o 150	°C				

THERMAL CHARACTERISTICS

Rating	Symbol	MJE18006	MJF18006	Unit
Thermal Resistance — Junction to Case	R _{θJC}	1.65	3.55	°C/W
— Junction to Ambient	R _{θJA}	62.5	62.5	

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

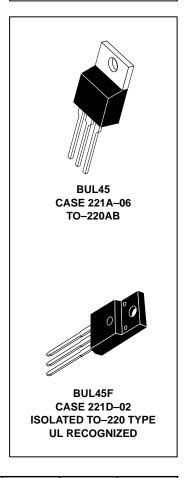
Characteristic	Symbol	Min	Тур	Мах	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (I _C = 100 mA, L = 25 mH)	VCEO(sus)	400	—		Vdc
Collector Cutoff Current (V _{CE} = Rated V _{CEO} , I _B = 0)	ICEO		—	100	μAdc
Collector Cutoff Current (V _{CE} = Rated V _{CES} , V _{EB} = 0) $(T_C = 125^{\circ}C)$	ICES		—	10 100	μAdc
Emitter Cutoff Current ($V_{EB} = 9.0 \text{ Vdc}, I_C = 0$)	IEBO	_	_	100	μAdc

(1) Pulse Test: Pulse Width = 5.0 ms, Duty Cycle \leq 10%.

(2) Proper strike and creepage distance must be provided.

Designer's and SWITCHMODE are trademarks of Motorola, Inc.

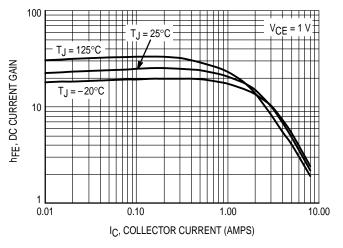
Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.


Preferred devices are Motorola recommended choices for future use and best overall value.

REV 2

*Motorola Preferred Device

POWER TRANSISTOR 5.0 AMPERES 700 VOLTS 35 and 75 WATTS


(continued)

BUL45 BUL45F

ELECTRICAL CHARACTERISTICS — continued ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic					Symbol	Min	Тур	Max	Unit
ON CHARACTERISTIC	S								
Base–Emitter Saturatio	V _{BE(sat)}		0.84 0.89	1.2 1.25	Vdc				
Collector–Emitter Satu (I _C = 1.0 Adc, I _B = 0	VCE(sat)		0.175 0.150	0.25	Vdc				
Collector–Emitter Satu $(I_C = 2.0 \text{ Adc}, I_B = 0)$	VCE(sat)		0.25 0.275	0.4	Vdc				
$(T_{C} \ DC \ Current \ Gain \ (I_{C} = 0.3 \ Adc, \ V_{CE} = 5.0 \ Vdc) \ (T_{C} \ (I_{C} = 2.0 \ Adc, \ V_{CE} = 1.0 \ Vdc) \ (T_{C} \$					hFE	14 — 7.0 5.0	— 32 14 12	34 — —	_
		dc, V _{CE} = 5.0 Vdc)				10	22	_	
OYNAMIC CHARACTER						i			
Current Gain Bandwidt	-	-		1.0 MHz)	fT		12	_	MHz
Output Capacitance (V		_	0 MHz)		Cob		50	75	pF
Input Capacitance (VE	_	Vdc)			C _{ib}		920	1200	pF
Dynamic Saturation Voltage		(I _C = 1.0 Adc I _{B1} = 100 mAdc	1.0 μs	(T _C = 125°C)			1.75 4.4	_ _	
Determined 1.0 μs a 3.0 μs respectively a rising I _{B1} reaches 90	after	1/ 00010	3.0 μs	(T _C = 125°C)	VCE	_	0.5 1.0	_	Vdc
of final I _{B1} (see Figure 18)		$(I_{C} = 2.0 \text{ Adc})$	1.0 μs	(T _C = 125°C)	(Dyn sat)	_	1.85 6.0	_	Vuc
	I _{B1} = 400 mAdc V _{CC} = 300 V)		3.0 μs	(T _C = 125°C)		_	0.5 1.0		
WITCHING CHARACT	ERISTI	CS: Resistive Loa	d			-			
Turn–On Time	Turn–On Time $(I_C = 2.0 \text{ Adc}, I_{B1} = I_{B2} = 0.4 \text{ Adc}$ Pulse Width = 20 µs, $(T_C = 125^{\circ}C)$ Duty Cycle < 20%				ton		75 120	110 —	ns
Turn–Off Time					toff	_	2.8 3.5	3.5 —	μs
WITCHING CHARACT	ERISTI	CS: Inductive Loa	d (Vcc =	= 15 Vdc, L _C = 20	0 μH, V _{clamp} = 3	300 Vdc)			
Fall Time	(IC =	= 2.0 Adc, I _{B1} = 0.4 = 0.4 Adc)	(T _C = 125°C)	tfi	70	 200	170 —	ns	
Storage Time			(T _C = 125°C)	t _{si}	2.6 —	 4.2	3.8 —	μs	
Crossover Time			(T _C = 125°C)	t _c	—	230 400	350 —	ns	
Fall Time		= 1.0 Adc, I _{B1} = 100 = 0.5 Adc)) mAdc	(T _C = 125°C)	t _{fi}		110 100	150 —	ns
Storage Time]			(T _C = 125°C)	t _{si}		1.1 1.5	1.7 —	μs
Crossover Time	1			(T _C = 125°C)	t _C		170 170	250 —	ns
Fall Time		= 2.0 Adc, I _{B1} = 250 = 2.0 Adc)) mAdc	(T _C = 125°C)	tfi	-	80	120	ns
Storage Time						-	0.6	0.9	μs
Crossover Time (T _C = 125°C					t _C	-	175	300	ns

TYPICAL STATIC CHARACTERISTICS

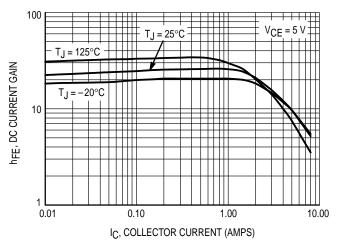
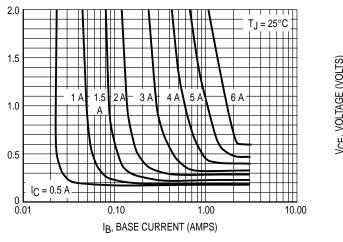



Figure 2. DC Current Gain at @ 5 Volts

V_{CE}, VOLTAGE (VOLTS)

Figure 3. Collector–Emitter Saturation Region

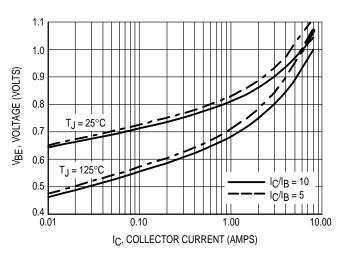


Figure 5. Base–Emitter Saturation Region

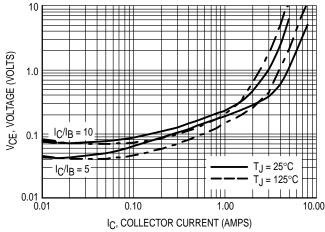


Figure 4. Collector–Emitter Saturation Voltage

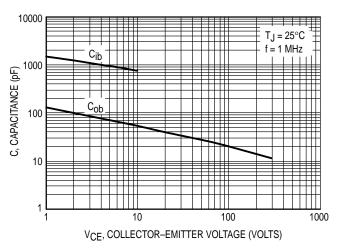
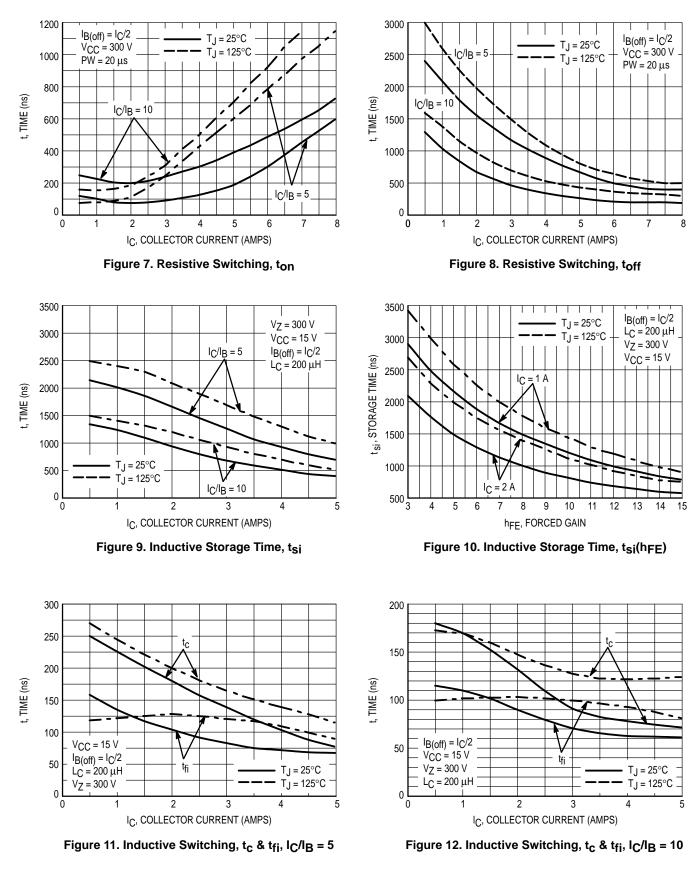



Figure 6. Capacitance

TYPICAL SWITCHING CHARACTERISTICS (IB2 = IC/2 for all switching)

TYPICAL SWITCHING CHARACTERISTICS (IB2 = IC/2 for all switching)

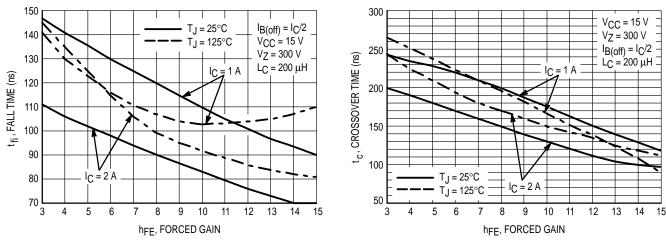


Figure 13. Inductive Fall Time, t_{fi}(hFE)

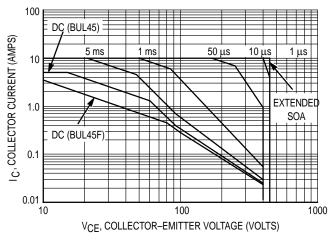


Figure 15. Forward Bias Safe Operating Area

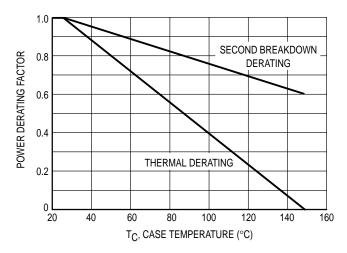


Figure 17. Forward Bias Power Derating

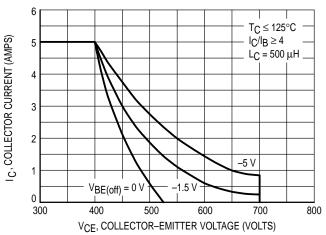


Figure 16. Reverse Bias Switching Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on T_C = 25°C; T_{J(pk)} is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown in Figure 15 may be found at any case temperature by using the appropriate curve on Figure 17. TJ(pk) may be calculated from the data in Figures 20 and 21. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base-to-emitter junction reverse-biased. The safe level is specified as a reverse-biased safe operating area (Figure 16). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

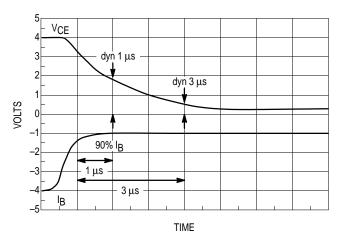


Figure 18. Dynamic Saturation Voltage Measurements

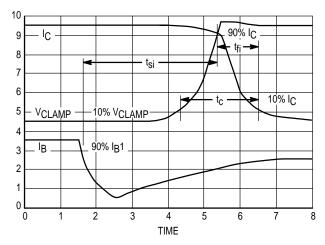


Figure 19. Inductive Switching Measurements

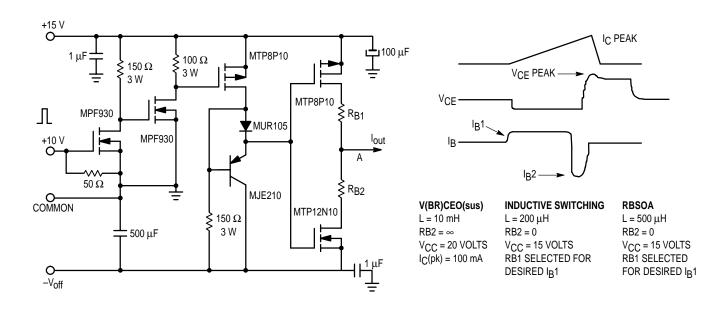


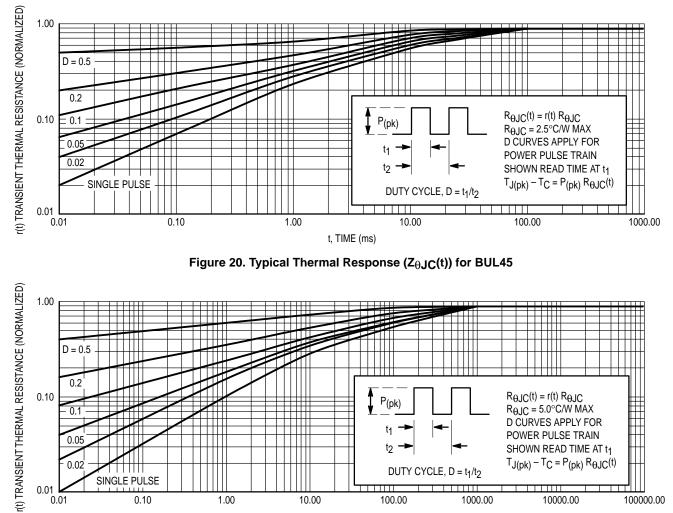
Table 1. Inductive Load Switching Drive Circuit

 $T_{J(pk)} - T_{C} = P_{(pk)} R_{\Theta JC}(t)$

10000.00

100000.00

DUTY CYCLE, $D = t_1/t_2$


1000.00

t, TIME (ms) Figure 21. Typical Thermal Response (Z_{0JC}(t)) for BUL45F

100.00

10.00

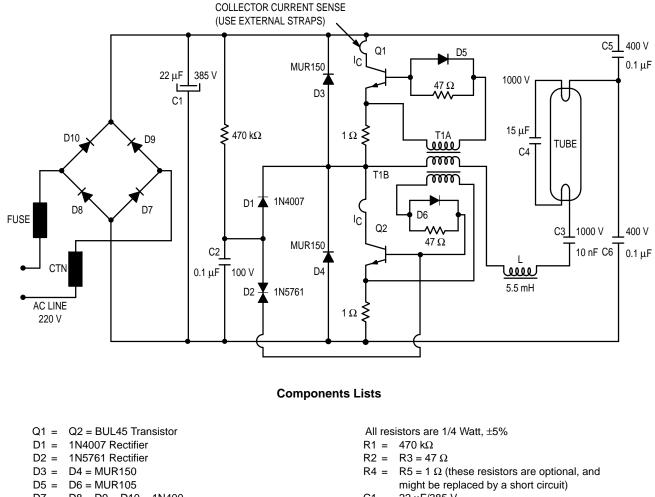
1.00

TYPICAL THERMAL RESPONSE

Motorola Bipolar Power Transistor Device Data

0.02

0.01


0.01

SINGLE PULSE

0.10

BUL45 BUL45F

The BUL45/BUL45F Bipolar Power Transistors were specially designed for use in electronic lamp ballasts. A circuit designed by Motorola applications was built to demonstrate how well these devices operate. The circuit and detailed component list are provided below.

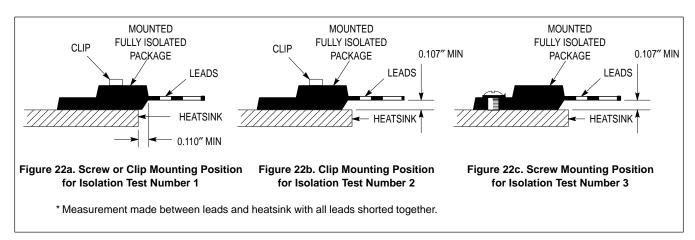
D7 = D8 = D9 = D10 = 1N400 $CTN = 47 \Omega @ 25^{\circ}C$

$$\mathsf{CTN} = 47 \,\Omega @ 25^{\circ}$$

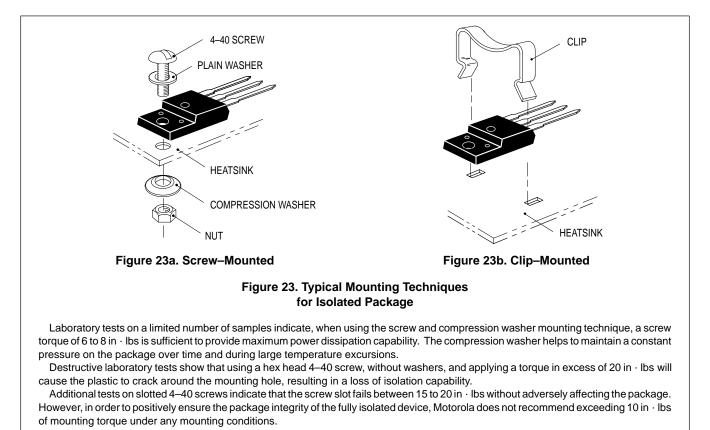
- L = RM10 core, A1 = 400, B51 (LCC) 75 turns, wire \emptyset = 0.6 mm
- T1 = FT10 toroid, T4A (LCC) Primary: 4 turns Secondaries: T1A: 4 turns T1B: 4 turns

- $C1 = 22 \,\mu F/385 \,V$
- $C2 = 0.1 \,\mu F$
- C3 = 10 nF/1000 V
- C4 = 15 nF/1000 V
- $C5 = C6 = 0.1 \ \mu F/400 \ V$

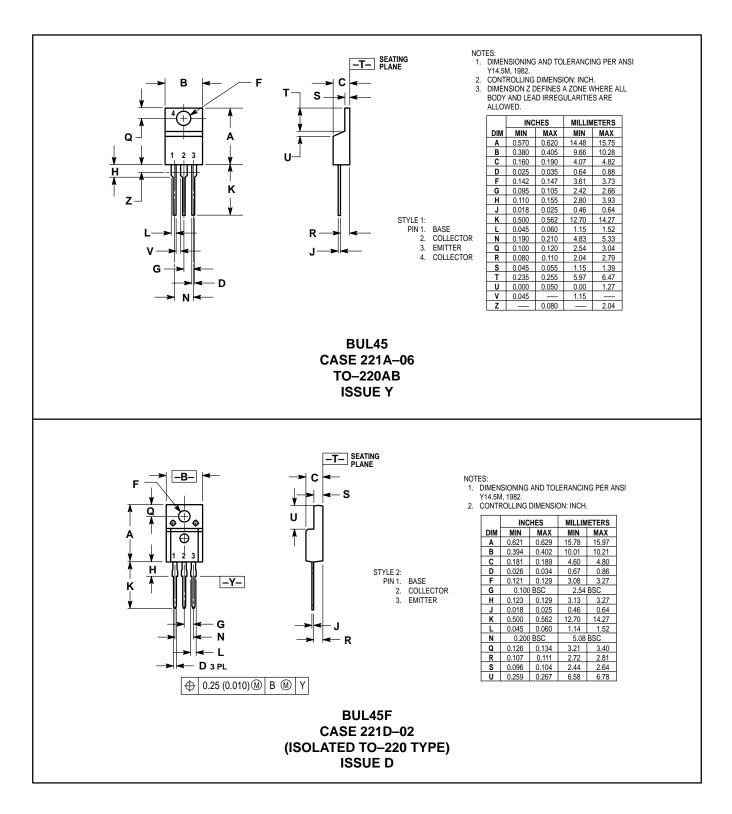
NOTES:


1. Since this design does not include the line input filter, it cannot be used "as-is" in a practical industrial circuit.

2. The windings are given for a 55 Watt load. For proper operation they must be re-calculated with any other loads.


Figure 22. Application Example

BUL45 BUL45F


MOUNTING INFORMATION**

** For more information about mounting power semiconductors see Application Note AN1040.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

PACKAGE DIMENSIONS

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

