SILICON NPN SWITCHING TRANSISTOR

- FAST SWITCHING TIMES
- LOW SWITCHING LOSSES
- VERY LOW SATURATION VOLTAGE AND HIGH GAIN FOR REDUCED LOAD OPERATION

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$V_{\text {cev }}$	Collector-emitter Voltage ($\mathrm{V}_{\mathrm{BE}}=-1.5 \mathrm{~V}$)	350	V
$V_{\text {ceo }}$	Collector-emitter Voltage ($\mathrm{I}_{\mathrm{B}}=0$)	250	V
$V_{\text {ebo }}$	Emitter-Base Voltage ($\mathrm{I}_{\mathrm{C}}=0$)	7	V
Ic	Collector Current	12	A
$I_{\text {cm }}$	Collector Peak Current	18	A
I_{B}	Base Current	2.5	A
$I_{B M}$	Base Peak Current	4	A
PBase	Reverse Bias Base Dissipation (B.E. junction in avalanche)	1	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\text {case }} \leq 20^{\circ} \mathrm{C}$	120	W
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to 200	${ }^{\circ} \mathrm{C}$
T_{j}	Max Operating Junction Temperature	200	${ }^{\circ} \mathrm{C}$

THERMAL DATA

$\mathrm{R}_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	1.46	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
Icer	Collector Cut-off Current ($\mathrm{R}_{\mathrm{BE}}=10 \Omega$)	$\begin{aligned} & V_{C E}=V_{C E V} \\ & \mathbf{V}_{C E}=V_{C E V} \end{aligned}$	$\mathrm{T}_{\mathrm{c}}=100^{\circ} \mathrm{C}$			$\begin{aligned} & 0.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Icev	Collector Cut-off Current	$\begin{aligned} & V_{C E}=V_{C E V} \\ & V_{C E}=V_{C E V} \end{aligned}$	$\begin{aligned} & V_{B E}=-1.5 \mathrm{~V} \\ & V_{B E}=-1.5 \mathrm{~V} T_{C}=100^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} 0.5 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$I_{\text {ebo }}$	Emitter Cut-off Current ($\mathrm{Ic}=0$)	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}$				1	mA
$\mathrm{V}_{\text {ceorsus)* }}$	Collector-E mitter Sustaining Voltage	$\begin{aligned} & \mathrm{IC}=0.2 \mathrm{~A} \\ & \mathrm{~L}=25 \mathrm{mH} \end{aligned}$		250			V
$V_{\text {Ebo }}$	Emitter-base Voltage ($\mathrm{I}_{\mathrm{c}}=0$)	$\mathrm{IE}=50 \mathrm{~mA}$		7			V
$V_{\text {CE(sat) }}{ }^{*}$	Collector-Emitter Saturation Voltage	$\begin{aligned} & I C=2 A \\ & I C=4 A \\ & I_{C}=6 A \\ & I_{C}=2 A \\ & I_{C}=4 A \\ & I_{C}=6 A \end{aligned}$	$\begin{array}{ll} I_{B}=0.13 \mathrm{~A} & \\ I_{B}=0.4 \mathrm{~A} & \\ I_{\mathrm{B}}=0.75 \mathrm{~A} & \\ \mathrm{I}_{\mathrm{B}}=0.13 \mathrm{~A} & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A} & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ \mathrm{I}_{\mathrm{B}}=0.75 \mathrm{~A} & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \end{array}$		$\begin{gathered} \hline 0.25 \\ 0.4 \\ 0.5 \\ 0.25 \\ 0.45 \\ 0.6 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.8 \\ & 0.9 \\ & 1.2 \\ & 0.9 \\ & 1.2 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
$V_{\text {bE(sat) }}{ }^{*}$	Base-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{IC}=4 \mathrm{~A} \\ & \mathrm{IC}=6 \mathrm{~A} \\ & \mathrm{IC}=4 \mathrm{~A} \\ & \mathrm{IC}=6 \mathrm{~A} \end{aligned}$	$\begin{array}{ll} I_{B}=0.4 \mathrm{~A} & \\ I_{B}=0.75 \mathrm{~A} & \\ I_{B}=0.4 \mathrm{~A} & T_{j}=100^{\circ} \mathrm{C} \\ I_{B}=0.75 \mathrm{~A} & T_{j}=100^{\circ} \mathrm{C} \end{array}$		$\begin{gathered} 1 \\ 1.1 \\ 0.9 \\ 1.1 \end{gathered}$	$\begin{aligned} & \hline 1.3 \\ & 1.5 \\ & 1.3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & v \\ & v \\ & v \\ & v \end{aligned}$
dio $/ \mathrm{d}_{1} *$	Rated of Rise of on-state Collector Current	$V_{C C}=200 \mathrm{~V}$	$\begin{array}{ll} \mathrm{R}_{\mathrm{C}}=0 & \mathrm{I}_{\mathrm{B} 1}=0.6 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & 25 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 35 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{A} / \mu \mathrm{s} \\ & \mathrm{~A} / \mu \mathrm{s} \end{aligned}$
$\mathrm{V}_{\mathrm{CE}(2 \mu \mathrm{~s})}$	Collector Emitter Dynamic Voltage	$\begin{aligned} & \mathrm{VCc}_{\mathrm{cc}}=200 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{C}}=50 \Omega \end{aligned}$	$\begin{aligned} & I_{B_{1} 1}=0.4 \mathrm{~A} \\ & T_{j}=25^{\circ} \mathrm{C} \\ & T_{j}=100^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 1.7 \\ & 2.5 \end{aligned}$	$\begin{gathered} 2.5 \\ 4 \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$
$\mathrm{V}_{\text {CE(4 }}$ s)	Collector Emitter Dynamic Voltage	$\begin{aligned} & \mathrm{VCC}=200 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{C}}=50 \Omega \end{aligned}$	$\begin{aligned} & I_{B_{1}}=0.4 \mathrm{~A} \\ & T_{j}=25^{\circ} \mathrm{C} \\ & T_{j}=100^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 0.9 \\ & 1.1 \end{aligned}$	$\begin{gathered} 1.7 \\ 2 \end{gathered}$	$\begin{aligned} & v \\ & v \end{aligned}$

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	RESISTIVE LOAD Rise Time Storage Time Fall Time	$\begin{aligned} & V_{C C}=200 \mathrm{~V} \\ & V_{B B}=-5 \mathrm{~V} \\ & R_{\mathrm{B} 2}=3.3 \Omega \end{aligned}$	$\begin{aligned} & I_{C}=6 \mathrm{~A} \\ & I_{1}=0.75 \mathrm{~A} \\ & T_{p}=30 \mu \mathrm{~s} \end{aligned}$		$\begin{gathered} 0.3 \\ 1 \\ 0.15 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 1.6 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{t}_{\mathrm{t}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$	INDUCTIVE LOAD Storage Time Fall Time Tail Time in Turn-on Crossover Time	$\begin{aligned} & V_{C C}=200 \mathrm{~V} \\ & l_{C C}=4 \mathrm{~A} \\ & V_{B B}=-5 \mathrm{~V} \\ & L_{C}=2.5 \mathrm{mH} \end{aligned}$	$\begin{aligned} & V_{\text {clamp }}=250 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B}}=0.4 \mathrm{~A} \\ & R_{\mathrm{B} 2}=6.3 \Omega \end{aligned}$		$\begin{gathered} 1.2 \\ 0.08 \\ 0.03 \\ 0.15 \end{gathered}$	$\begin{gathered} 1.8 \\ 0.2 \\ 0.12 \\ 0.35 \end{gathered}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \\ & \mathrm{t}_{\mathrm{t}} \\ & \mathrm{t}_{\mathrm{c}} \end{aligned}$	Storage Time Fall Time Tail Time in Turn-on Crossover Time	$\begin{aligned} & \mathrm{VCC}=200 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{CC}}=4 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BB}}=-5 \mathrm{~V} \\ & \mathrm{~L}_{\mathrm{C}}=2.5 \mathrm{mH} \end{aligned}$	$\begin{aligned} & V_{\text {clamp }}=250 \mathrm{~V} \\ & I_{B}=0.4 \mathrm{~A} \\ & R_{B 2}=6.3 \Omega \\ & T_{j}=100^{\circ} \mathrm{C} \end{aligned}$		$\begin{gathered} 1.8 \\ 0.2 \\ 0.08 \\ 0.4 \\ \hline \end{gathered}$	$\begin{aligned} & 2.4 \\ & 0.4 \\ & 0.2 \\ & 0.7 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \hline \end{aligned}$
$\begin{aligned} & t_{s} \\ & t_{f} \\ & t_{t} \end{aligned}$	Storage Time Fall Time Tail Time in Turn-on	$\begin{aligned} & V_{C C}=200 \mathrm{~V} \\ & I C C=4 \mathrm{~A} \\ & V_{B B}=0 \\ & L_{C}=2.5 \mathrm{mH} \end{aligned}$	$\begin{aligned} & V_{\text {clamp }}=250 \mathrm{~V} \\ & I_{B}=0.5 \mathrm{~A} \\ & R_{\mathrm{B} 2}=7.5 \Omega \end{aligned}$		$\begin{aligned} & 2.5 \\ & 0.4 \\ & 0.15 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$
$\begin{aligned} & t_{s} \\ & t_{f} \\ & t_{t} \end{aligned}$	Storage Time Fall Time Tail Time in Turn-on	$\begin{aligned} & \begin{array}{l} V_{C C}=200 \mathrm{~V} \\ l_{C C}=4 \mathrm{~A} \\ V_{B B}=0 \\ L_{C}=2.5 \mathrm{mH} \end{array} \end{aligned}$	$\begin{aligned} & V_{\text {clamp }}=250 \mathrm{~V} \\ & I_{B}=0.4 \mathrm{~A} \\ & R_{B 2}=7.5 \Omega \\ & T_{j}=100^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 4.8 \\ & 0.7 \\ & 0.4 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \end{aligned}$

