


Absolute Maximum Ratings(Note 1)
(Note 2)
$\begin{array}{lr}\text { DC Supply Voltage }\left(\mathrm{V}_{\mathrm{DD}}\right) & -0.5 \mathrm{~V} \text { to }+18 \mathrm{~V}_{\mathrm{DC}} \\ \text { Input Voltage }\left(\mathrm{V}_{\mathrm{IN}}\right) & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}_{\mathrm{DC}} \\ \text { Storage Temperature }\left(\mathrm{T}_{\mathrm{S}}\right) & -65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\ \text { Power Dissipation }\left(\mathrm{P}_{\mathrm{D}}\right) & \\ \quad \begin{array}{l}\text { Dual-In-Line }\end{array} \\ \quad \text { Small Outline } & 500 \mathrm{~mW} \\ \text { Lead Temperature }\left(\mathrm{T}_{\mathrm{L}}\right) & 500 \mathrm{~mW} \\ \quad \text { (Soldering, } 10 \text { seconds) } & 260^{\circ} \mathrm{C}\end{array}$

Recommended Operating Conditions (Note 2)

| DC Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$ | 3.0 V to $15 \mathrm{~V}_{\mathrm{DC}}$ |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ | 0 V to $\mathrm{V}_{\mathrm{DD}} \mathrm{V}_{\mathrm{DC}}$ |
| Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and Electrical Characteristics" provide conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.

DC Electrical Characteristics (Note 2)

| Symbol | Parameter | Conditions | $-40^{\circ} \mathrm{C}$ |  | $+25^{\circ} \mathrm{C}$ |  |  | $+85^{\circ} \mathrm{C}$ |  | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Typ | Max | Min | Max |  |
| $\overline{\mathrm{ID}}$ | Quiescent Device Current | $\begin{aligned} & V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$ |  | $\begin{aligned} & \hline 0.02 \\ & 0.02 \\ & 0.02 \\ & \hline \end{aligned}$ | $\begin{aligned} & 20 \\ & 40 \\ & 80 \end{aligned}$ |  | $\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$ | $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ <br> $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW Level Output Voltage | $\begin{aligned} & \mid \mathrm{IO} \leq 1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { v } \\ & \text { v } \\ & \text { v } \end{aligned}$ |
| $\overline{\mathrm{V}} \mathrm{OH}$ | HIGH Level Output Voltage | $\begin{aligned} & \mid \mathrm{I}_{\mathrm{O}} \leq 1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$ | $\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$ |  | $\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$ | $\begin{array}{r} 5.0 \\ 10 \\ 15 \end{array}$ |  | $\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$ |  | $\begin{aligned} & \text { v } \\ & \text { v } \\ & \text { v } \end{aligned}$ |
| $\overline{\mathrm{V} \text { IL }}$ | LOW Level Input Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$ |  | $\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$ |  | $\begin{gathered} \hline 2.25 \\ 4.5 \\ 6.75 \end{gathered}$ | $\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$ |  | $\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$ |
| $\overline{\mathrm{V}_{\mathrm{IH}}}$ | HIGH Level Input Voltage | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V} \text { or } 9 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$ | $\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$ |  | $\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$ | $\begin{gathered} \hline 2.75 \\ 5.5 \\ 8.25 \\ \hline \end{gathered}$ |  | $\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$ |  | $\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{v} \\ & \mathrm{v} \end{aligned}$ |
| $\mathrm{l}_{\mathrm{OL}}$ | LOW Level Output Current (Note 3) | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$ | $\begin{gathered} \hline 0.52 \\ 1.3 \\ 3.6 \\ \hline \end{gathered}$ |  | $\begin{gathered} \hline 0.44 \\ 1.1 \\ 3.0 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \\ \hline \end{gathered}$ |  | $\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $\overline{\mathrm{IOH}}$ | HIGH Level Output <br> Current <br> (Note 3) | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \end{aligned}$ | $\begin{gathered} \hline-0.52 \\ -1.3 \\ -3.6 \end{gathered}$ |  | $\begin{gathered} \hline-0.44 \\ -1.1 \\ -3.0 \end{gathered}$ | $\begin{gathered} \hline-0.88 \\ -2.25 \\ -8.8 \end{gathered}$ |  | $\begin{aligned} & \hline-0.36 \\ & -0.9 \\ & -2.4 \end{aligned}$ |  | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$ |
| $\overline{\mathrm{IN}}$ | Input Current | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$ |  | $\begin{array}{r} \hline-0.30 \\ 0.30 \end{array}$ |  | $\begin{gathered} -10^{-5} \\ 10^{-5} \end{gathered}$ | $\begin{array}{r} \hline-0.30 \\ 0.30 \end{array}$ |  | $\begin{gathered} \hline-1.0 \\ 1.0 \end{gathered}$ | $\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$ |


| AC Electrical Characteristics (Note 4) <br> $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise noted |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Symbol | Parameter | Conditions | Min | Typ | Max | Units |
| $\overline{t_{\text {PHL, }} \text { PPLH }}$ | Propagation Delay Data to Output | $\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{gathered} \hline 200 \\ 75 \\ 50 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 400 \\ & 150 \\ & 100 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ |
| $\mathrm{t}_{\text {PLH, }} \mathrm{t}_{\text {PHL }}$ | Propagation Delay <br> Enable to Output | $\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{gathered} \hline 200 \\ 80 \\ 60 \\ \hline \end{gathered}$ | $\begin{aligned} & 400 \\ & 160 \\ & 120 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ |
| $\overline{t_{\text {PHL }}}$ | Propagation Delay Clear to Output | $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \hline 175 \\ & 80 \\ & 65 \\ & \hline \end{aligned}$ | $\begin{aligned} & 350 \\ & 160 \\ & 130 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$ |
| trLh, $^{\text {tPHL }}$ | Propagation Delay <br> Address to Output | $\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \hline 225 \\ & 100 \\ & 75 \\ & \hline \end{aligned}$ | $\begin{aligned} & 450 \\ & 200 \\ & 150 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \\ & \hline \end{aligned}$ |
| $\overline{\tau_{\text {THL }}, \mathrm{t}_{\text {TLH }}}$ | Transition Time <br> (Any Output) | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{array}{r} \hline 100 \\ 50 \\ 40 \\ \hline \end{array}$ | $\begin{aligned} & \hline 200 \\ & 100 \\ & 80 \\ & \hline \end{aligned}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ |
| $\mathrm{T}_{\mathrm{WH},} \mathrm{T}_{\mathrm{WL}}$ | Minimum Data Pulse Width | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{gathered} \hline 100 \\ 50 \\ 40 \\ \hline \end{gathered}$ | $\begin{array}{r} \hline 200 \\ 100 \\ 80 \\ \hline \end{array}$ | $\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ |
| ${ }_{\text {t }}{ }^{\text {H }}$, ${ }_{\text {WL }}$ | Minimum Address <br> Pulse Width | $\begin{array}{\|l} \hline V_{D D}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ \hline \end{array}$ |  | $\begin{gathered} \hline 200 \\ 100 \\ 65 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 400 \\ & 200 \\ & 125 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ |
| $\mathrm{t}_{\text {WH }}$ | Minimum Clear Pulse Width | $\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ \hline \end{array}$ |  | $\begin{aligned} & 75 \\ & 40 \\ & 25 \end{aligned}$ | $\begin{aligned} & 150 \\ & 75 \\ & 50 \end{aligned}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$ |
| $\mathrm{tsu}^{\text {S }}$ | Minimum Setup Time Data to E | $\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$ | $\begin{aligned} & 80 \\ & 40 \\ & 30 \end{aligned}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$ |
| ${ }_{\text {t }}$ | Minimum Hold Time Data to E | $\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \hline 60 \\ & 30 \\ & 25 \\ & \hline \end{aligned}$ | $\begin{aligned} & 120 \\ & 60 \\ & 50 \end{aligned}$ | $\begin{aligned} & \hline \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$ |
| $\mathrm{t}_{\text {SU }}$ | Minimum Setup Time Address to E | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{gathered} \hline-15 \\ 0 \\ 0 \end{gathered}$ | $\begin{aligned} & 50 \\ & 30 \\ & 20 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ |
| ${ }_{\text {t }}$ | Minimum Hold Time Address to E | $\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$ |  | $\begin{aligned} & \hline-50 \\ & -20 \\ & -15 \end{aligned}$ | $\begin{gathered} 15 \\ 10 \\ 5 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ |
| $\overline{C_{P D}}$ | Power Dissipation Capacitance | Per Package (Note 5) |  | 100 |  | pF |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | Any Input |  | 5.0 | 7.5 | pF |
| Note 4: AC Parameters are guaranteed by DC correlated testing. <br> Note 5: Dynamic power dissipation ( $P_{D}$ ) is given by: $P_{D}=\left(C_{P D}+C_{L}\right) V_{C C}{ }^{2} f+P_{Q}$; where $C_{L}=$ load capacitance; $f=$ frequency of operation; for further details see Application Note AN-90, "Family Characteristics". |  |  |  |  |  |  |

Switching Time Waveforms



Fairchild does not assume ary responsibility for use of any circcitry described, no circuit patent licenses are implied and Fairchild reserves the right at ary time without notice to change said circuitry and specifications.

