

OVERVIEW

The CF5036 series are 2.5V operation, differential PECL output oscillator ICs. They support 50MHz to 250MHz 3rd overtone oscillation and 50MHz to 700MHz fundamental oscillation. The devices are fabricated using a proprietary BiCMOS process, enabling a high-frequency oscillator circuit and differential LVPECL output buffer to be incorporated on a single chip. The CF5036 series can be used to construct high-frequency PECL output oscillators.

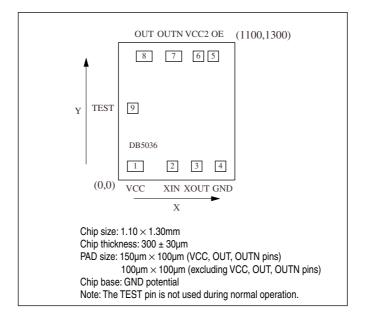
FEATURES

- 2.375 to 3.6V operating supply voltage range
- Operating frequency range (varies with version)
 - 50MHz to 700MHz fundamental oscillation
 - 50MHz to 250MHz 3rd overtone oscillation
- -40 to 85°C operating temperature range
- Differential LVPECL output
- 50Ω output load (terminated to $V_{CC} 2V$)
- Standby function
 - Outputs are high impedance when OE is LOW. (oscillator stops)
- Power-saving pull-up resistor built-in (pin OE)
- BiCMOS process
- Chip form (CF5036××)

SERIES CONFIGURATION

Version	Oscillation mode	Recommended operating frequency range ^{*1} [MHz]	Output frequency
CF5036G1		50 to 80	f _O
CF5036G2		50 10 60	f _O /2
CF5036A1		80 to 120	f _O
CF5036A2	Fundamental or	00 10 120	f _O /2
CF5036B1	3rd overtone	100 to 180	f _O
CF5036B2		100 to 160	f _O /2
CF5036C1		150 to 250	f _O
CF5036C2		130 to 230	f _O /2
CF5036D1		250 to 400	f_O
CF5036D2		250 10 400	f _O /2
CF5036E1	Fundamental	400 to 600	f_O
(CF5036E2)	Tundamentai	400 to 000	f _O /2
CF5036F1		600 to 700	f _O
(CF5036F2)		000 to 700	f _O /2
(CF5036V1)		80 to 400	f _O
(CF5036V2)	Oscillator constants determined	ou to 400	f _O /2
(CF5036W1)	by external components (R _f , C _{XIN} , C _{XOUT})	400 to 700	f _O
(CF5036W2)		400 to 700	f _O /2

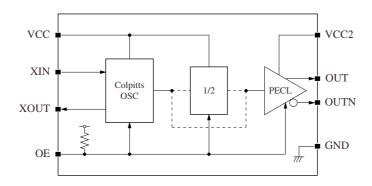
^{*1.} The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.


Note. These versions in parentheses () are under development. Please ask our Sales & Marketing section for further detail.

ORDERING INFORMATION

Device	Package
CF5036××-1	Chip form

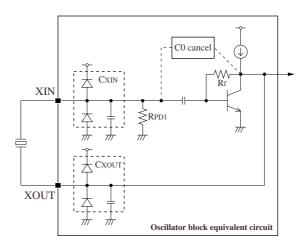
PAD LAYOUT


(Unit: µm)

PIN DESCRIPTION and PAD DIMENSIONS

Ded No.	Nama	1/0	Function	Pad dimensions	
Pad No.	Name	I/O	Function	Х	Υ
1	VCC	-	(+) supply pin	160	130
2	XIN	I	Oscillator input pin	511	130
3	XOUT	0	Oscillator output pin	740	130
4	GND	-	(–) ground pin	965	130
5	OE	I	Output enable pin. Outputs are high impedance when LOW (oscillator stopped). Power-saving pull-up resistor built-in.	896	1170
6	VCC2	-	(+) output buffer supply pin	756	1170
7	OUTN	0	Output pin (complementary)	523	1170
8	OUT	0	Output pin (true)	244	1170
9	TEST	I	IC test pin. Leave open circuit for normal operation.	136	678

BLOCK DIAGRAM


OSCILLATOR CIRCUIT CONSTANT

The CF5036 series oscillator setting varies with device version to optimize characteristics over the recommended operating frequency range.

Version	Oscillation mode	Built-in capacitance*1 *2[pF]		Recommended operating
version	Oscillation mode	C _{XIN}	C _{XOUT}	frequency range ^{†3} [MHz]
CF5036G×		16	16	50 to 80
CF5036A×	Fundamental	12	12	80 to 120
CF5036B×	or 3rd overtone	8	8	100 to 180
CF5036C×		6	6	150 to 250
CF5036D×		5	5	250 to 400
CF5036E×	Fundamental	5	5	400 to 600
CF5036F×		4	4	600 to 700
CF5036V×	Setting by external components	(4)	(4)	80 to 400
CF5036W×	(C0 cancel is not built-in.)	(4)	(4)	400 to 700

^{*1.} The oscillator internal capacitance values includes parasitic capacitance.

Oscillator Equivalent Circuit

The CF5036 series oscillator circuit has a C0 cancel circuit built-in to improve the oscillator margin. If power is applied when there is an open circuit between XIN and XOUT, self oscillation may occur, which is not abnormal. Users should confirm that the oscillator operates normally when a crystal unit is connected.

^{*2.} Values in parentheses () are provisional only.

^{*3.} The recommended operating frequency is a yardstick value derived from the crystal used for NPC characteristics authentication. However, the oscillator frequency band is not guaranteed. Specifically, the characteristics can vary greatly due to crystal characteristics and mounting conditions, so the oscillation characteristics of components must be carefully evaluated.

SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage range	V _{CC}		-0.5 to +5.0	٧
Input voltage range	V _{IN}		GND – 0.5 to V _{CC} + 0.5	٧
Output voltage range	V _{OUT}		GND – 0.5 to V _{CC} + 0.5	٧
Storage temperature range	T _{STG}	Chip form	-65 to +150	°C

Recommended Operating Conditions

D	Complete	Conditions		1124		
Parameter	Symbol		Min	Тур	Max	Unit
Operating supply voltage	V _{CC}		2.375	-	3.6	٧
Input voltage	V _{IN}		GND	-	V _{CC}	V
Operating temperature	T _{OPR}		-40	+25	+85	°C
Output load	R _L	Terminated to V _{CC} – 2V	49.5	50	50.5	Ω
Output frequency	f _{OUT}		25	-	700	MHz

Electrical Characteristics

3.3V operation

 V_{CC} = 3.0 to 3.6V, GND = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Cumbal		Conditions		Rating		Unit
Parameter	Symbol	Conditions		Min	Тур	Max	Offic
Current consumption 1		Measurement cct. 1,	5036G×, A×, B×, C×, D×	-	55	88	mA
Current consumption 1	I _{EE1}	OE = open	5036E×, F×	-	64	98	mA
Current consumption 2	I _{EE2}	Measurement cct. 1, C	E = LOW	-	-	30	μΑ
LIICI I laval autaut valtaga	V	V _{OH} Measurement cct. 2, V _{CC} = 3.3V, OE = open, OUT, OUTN pins	Ta = 0 to 85°C	2.275	2.350	2.420	V
HIGH-level output voltage	VOH		Ta = -40°C	2.215	2.295	2.420	V
LOW level output valtage	V		Ta = 0 to 85°C	1.490	1.600	1.680	V
LOW-level output voltage	VOL		Ta = -40°C	1.470	1.605	1.745	V
Output leakage current	I _Z	Measurement cct. 3, C	E = LOW, OUT, OUTN pins	-	-	10	μΑ
HIGH-level input voltage	V _{IH}	Measurement cct. 1, C	E pin	0.7V _{CC}	-	-	V
LOW-level input voltage	V _{IL}	Measurement cct. 1, C	Measurement cct. 1, OE pin		-	0.3V _{CC}	V
LOW-level input current 1	I _{IL1}	Measurement cct. 1, V _{IL} = 0V, OE pin		-2	-	-20	μΑ
LOW-level input current 2	I _{IL2}	Measurement cct. 1, V _{IL} = 0.7V _{CC} , OE pin		-20	-	-200	μΑ
Pull-down resistance 1	R _{PD1}	Measurement cct. 3, X	IN pin	12	24	48	kΩ

2.5V operation

 V_{CC} = 2.375 to 2.625V, GND = 0V, Ta = -40 to +85°C unless otherwise noted.

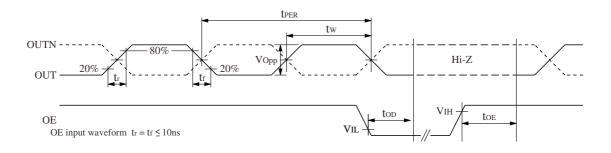
Parameter	Symbol	Conditions			Rating		Unit
Parameter	Symbol			Min	Тур	Max	Unit
Current concumption 1		Measurement cct. 1,	5036G×, A×, B×, C×, D×	-	55	88	mA
Current consumption 1	I _{EE1}	OE = open	5036E×, F×	-	64	98	mA
Current consumption 2	I _{EE2}	Measurement cct. 1, C	DE = LOW	-	-	30	μΑ
LUCII level evitevit veltere	V		Ta = 0 to 85°C	1.475	1.550	1.760	V
HIGH-level output voltage	V _{OH}	Measurement cct. 2, $V_{CC} = 2.5V$,	Ta = -40°C	1.415	1.495	1.620	V
LOW level autout valtage	V	V _{OL} OE = open, OUT, OUTN pins	Ta = 0 to 85°C	0.690	0.800	1.095	٧
LOW-level output voltage	VOL		Ta = -40°C	0.670	0.805	1.195	V
Output leakage current	IZ	Measurement cct. 3, C	DE = LOW, OUT, OUTN pins	-	-	10	μΑ
HIGH-level input voltage	V _{IH}	Measurement cct. 1, C	DE pin	0.7V _{CC}	-	-	V
LOW-level input voltage	V _{IL}	Measurement cct. 1, C	Measurement cct. 1, OE pin		-	0.3V _{CC}	٧
LOW-level input current 1	I _{IL1}	Measurement cct. 1, V _{IL} = 0V, OE pin		-2	-	-20	μΑ
LOW-level input current 2	I _{IL2}	Measurement cct. 1, V _{IL} = 0.7V _{CC} , OE pin		-10	-	-150	μΑ
Pull-down resistance 1	R _{PD1}	Measurement cct. 3, X	(IN pin	12	24	48	kΩ

Switching Characteristics

3.3V operation

 V_{CC} = 3.0 to 3.6V, GND = 0V, Ta = -40 to +85°C unless otherwise noted.

Parameter	Cumbal	Conditions			Rating		Unit
Parameter	Symbol			Min	Тур	Max	Unit
Outrost distribution and a	Dutud	Measurement cct. 4, measured	f < 350MHz	45	-	55	%
Output duty cycle 1	Duty1	at output crossing point, Ta = 25°C, V _{CC} = 3.3V	f ≥ 350MHz	40	-	60	%
Output duty avala 0	Duto	Measurement cct. 4,	f < 350MHz	45	-	55	%
Output duty cycle 2	Duty2	measured at 50% output swing, Ta = 25°C, V _{CC} = 3.3V	f ≥ 350MHz	40	-	60	%
		Measurement cct. 4, Ta = T _{OPR} , Peak to peak of single output	5036G×: f = 80MHz	0.4	-	-	٧
			5036A×: f = 120MHz	0.4	-	-	٧
			5036B×: f = 180MHz	0.4	-	-	٧
Output swing*1	V _{Opp}		5036C×: f = 250MHz	0.4	_	-	V
		waveform	5036D×: f = 400MHz	0.4	_	-	V
			5036E×: f = 600MHz	0.4	-	-	٧
			5036F×: f = 700MHz	0.4	_	-	V
Output rise time	t _r	Measurement cct. 4, 20 to 80% output swing		-	0.3	0.7	ns
Output fall time	t _f	Measurement cct. 4, 80 to 20% output swing		-	0.3	0.7	ns
Output enable time*2	t _{OE}	Measurement cct. 1, Ta = 25°C		-	-	2	ms
Output disable time	t _{OD}	Measurement cct. 1, Ta = 25°C		-	_	200	ns


^{*1.} The said values are measured by using the NPC standard jig.
*2. The built-in oscillator stop function does not operate with normal output immediately when OE goes HIGH. Instead, normal output occurs after the oscillator startup time has elapsed.

2.5V operation

 V_{CC} = 2.375 to 2.625V, GND = 0V, Ta = -40 to +85°C unless otherwise noted.

Dawawastan	Complete	Conditions			Rating		1114
Parameter	Symbol			Min	Тур	Max	Unit
Outrot distributed 4	Duted	Measurement cct. 4, measured	f < 350MHz	45	-	55	%
Output duty cycle 1	Duty1	at output crossing point, Ta = 25°C, V _{CC} = 2.5V	f ≥ 350MHz	40	-	60	%
Output data and O	D. t. 0	Measurement cct. 4,	f < 250MHz	45	-	55	%
Output duty cycle 2	Duty2	measured at 50% output swing, Ta = 25°C, V _{CC} = 2.5V	f ≥ 250MHz	40	-	60	%
		Measurement cct. 4, Ta = T _{OPR} , Peak to peak of single output waveform	5036G×: f = 80MHz	0.2	-	-	V
			5036A×: f = 120MHz	0.2	-	-	V
Output swing ^{*1} V _{Opp}			5036B×: f = 180MHz	0.2	_	-	V
	V _{Opp}		5036C×: f = 250MHz	0.2	-	-	V
			5036D×: f = 400MHz	0.2	_	-	V
			5036E×: f = 600MHz	0.2	-	-	V
			5036F×: f = 700MHz	0.2	_	-	V
Output rise time	t _r	Measurement cct. 4, 20 to 80% output swing		_	0.3	0.7	ns
Output fall time	t _f	Measurement cct. 4, 80 to 20% output swing		_	0.3	0.7	ns
Output enable time*2	t _{OE}	Measurement cct. 1, Ta = 25°C		-	-	2	ms
Output disable time	t _{OD}	Measurement cct. 1, Ta = 25°C		_	_	200	ns

^{*1.} The said values are measured by using the NPC standard jig.
*2. The built-in oscillator stop function does not operate with normal output immediately when OE goes HIGH. Instead, normal output occurs after the oscillator startup time has elapsed.

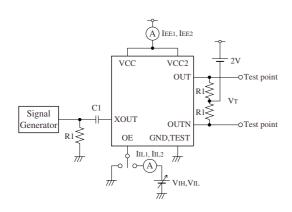
 $\begin{array}{l} DUTY1 = 100t_W/t_{PER}~(\%)~@~crossing~point\\ DUTY2 = 100t_W/t_{PER}~(\%)~@~50\%~waveform \end{array}$

Timing chart

FUNCTIONAL DESCRIPTION

Standby Function

When OE goes LOW, the oscillator stops and the output pins (OUT, OUTN) become high impedance.

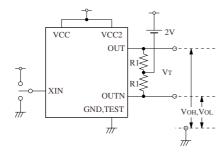

OE	OUT, OUTN	Oscillator
HIGH (or open)	Either f _O or f _O /2	Normal operation
LOW	High impedance	Stopped

Power-saving Pull-up Resistor

The OE pin pull-up resistance changes in response to the input level (HIGH or LOW). When OE is tied LOW (standby state), the pull-up resistance becomes large, reducing the current consumed by the resistance. When OE is open circuit, the pull-up resistance becomes small, decreasing the susceptibility to the effects of external noise.

MEASUREMENT CIRCUITS

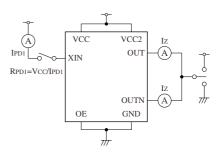
Measurement Circuit 1

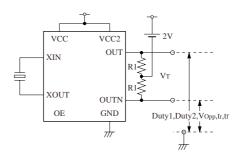


500 mVp-p, sine wave C1: $0.01 \mu F$

R1: 49.9Ω

Note. Connect 0.01µF and approximately 10µF bypass capacitors between supply (V_{CC} , V_{CC2}) and GND. Note that the $0.01\mu F$ capacitor should have circuit wiring as short as possible.


Measurement Circuit 2


R1: 49.9Ω

XIN = HIGH: OUT = HIGH XIN = LOW : OUT = LOW

Measurement Circuit 3

Measurement Circuit 4

R1: 49.9Ω

Note. Connect 0.01 μ F and approximately 10 μ F bypass capacitors between supply (V_{CC}, V_{CC2}) and GND. Note that the 0.01 μ F capacitor should have circuit wiring as short as possible.

Please pay your attention to the following points at time of using the products shown in this document.

The products shown in this document (hereinafter "Products") are not intended to be used for the apparatus that exerts harmful influence on human lives due to the defects, failure or malfunction of the Products. Customers are requested to obtain prior written agreement for such use from SEIKO NPC CORPORATION (hereinafter "NPC"). Customers shall be solely responsible for, and indemnify and hold NPC free and harmless from, any and all claims, damages, losses, expenses or lawsuits, due to such use without such agreement. NPC reserves the right to change the specifications of the Products in order to improve the characteristic or reliability thereof. NPC makes no claim or warranty that the contents described in this document dose not infringe any intellectual property right or other similar right owned by third parties. Therefore, NPC shall not be responsible for such problems, even if the use is in accordance with the descriptions provided in this document. Any descriptions including applications, circuits, and the parameters of the Products in this document are for reference to use the Products, and shall not be guaranteed free from defect, inapplicability to the design for the mass-production products without further testing or modification. Customers are requested not to export or re-export, directly or indirectly, the Products to any country or any entity not in compliance with or in violation of the national export administration laws, treaties, orders and regulations. Customers are requested appropriately take steps to obtain required permissions or approvals from appropriate government agencies.

SEIKO NPC CORPORATION

15-6, Nihombashi-kabutocho, Chuo-ku, Tokyo 103-0026, Japan Telephone: +81-3-6667-6601 Facsimile: +81-3-6667-6611 http://www.npc.co.jp/ Email: sales@npc.co.jp

NC0308FE 2006.04