

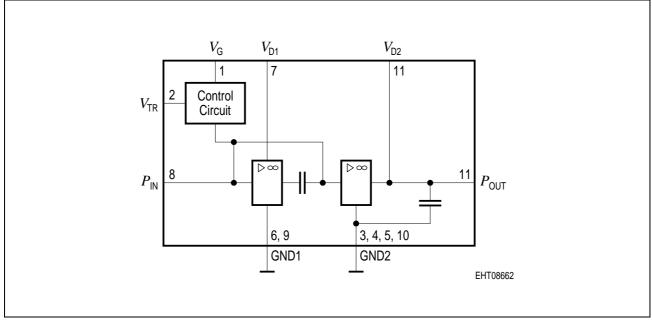
GaAs MMIC

Data Sheet

- Power amplifier for PCN/PCS applications
- Fully integrated 2 stage amplifier
- Operating voltage range: 2.7 to 6 V
- Overall power added efficiency 35%
- Input matched to 50 Ω , simple output match

ESD: Electrostatic discharge sensitive device, observe handling precautions!

Туре	Marking	Ordering Code (8-mm taped)	Package ¹⁾
CGY 181	CGY 181	Q68000-A8883	MW-12


¹⁾ Plastic body identical to P-SOT-223, dimensions see **Page 14**.

Maximum Ratings	Symbol	Value	Unit
Positive supply voltage	VD	9	V
Negative supply voltage ¹⁾	V _G	- 8	V
Supply current	ID	2	А
Channel temperature	T _{Ch}	150	°C
Storage temperature	T _{stg}	- 55 + 150	°C
RF input power	P _{in}	25	dBm
Total power dissipation ($T_s \le 81 \text{ °C}$) T_s : Temperature at soldering point	P _{tot}	5	W

¹⁾ $V_{\rm G} = -8$ V only in combination with $V_{\rm TR} = 0$ V; $V_{\rm G} = -6$ V while $V_{\rm TR} \neq 0$ V

Thermal Resistance	Symbol	Value	Unit
Channel-soldering point	R _{thChS}	≤ 14	K/W

Short Description of CGY 181 Operation

A negative voltage between -4 V to -6 V (stabilization not necessary) has to be connected to the VG-pin, a positive supply voltage has to be applied to the VD-pins.

The VTR-pin has to switched to 0 V (GND) during transmit operation. The MMIC CGY 181 is self-biased, the operating current is adjusted by the internal control circuit.

In receive mode the VTR-pin is not connected (shut off mode).

Pin #	Symbol	Configuration	
1	VG	Negative voltage at control circuit ($-4 \vee \dots - 8 \vee$)	
2	VTR	Control voltage for transmit mode (0 V) or receive mode (open)	
3, 4, 5, 10	GND 2	RF and DC ground of the 2 nd stage	
6, 9	GND 1	RF and DC ground of the 1 st stage	
7	VD1	Positive drain voltage of the 1 st stage	
8	RFin	RF input power	
11	VD2, RFout	Positive drain voltage of the 2 nd stage, RF output power	
12	-	not connected	

DC Characteristics

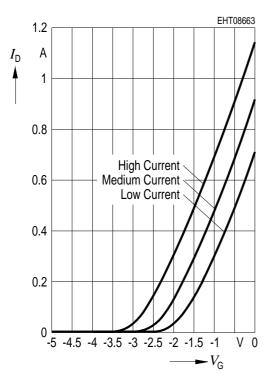
Characteristics	Symbol	Limit Values			Unit	Test
		min.	typ.	max.		Conditions
Drain current	I _{DSS1}	0.6	0.9	1.2	А	$V_{\rm D}$ = 3 V,
(stage 1 and 2)	I _{DSS2}	2.4	3.5	4.8	A	$V_{\rm G} = 0 \text{ V},$ $V_{\rm TR} \text{ n.c.}$
Drain current with active current control	I _D	-	1.0	-	A	$V_{\rm D} = 3 \text{ V},$ $V_{\rm G} = -4 \text{ V},$ $V_{\rm TR} = 0 \text{ V}$
Transconductance (stage 1 and 2)	G _{fs1}	0.28	0.32	-	S	$V_{\rm D}$ = 3 V, $I_{\rm D}$ = 350 mA
	G_{fs2}	1.1	1.3	-	S	$V_{\rm D}$ = 3 V, $I_{\rm D}$ = 700 mA
Pinch off voltage	V _p	- 3.8	- 2.8	- 1.8	V	$V_{\rm D}$ = 3 V, $I_{\rm D}$ < 500 µA (all stages)

Electrical Characteristics

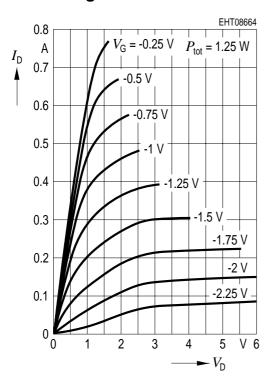
 $T_{\rm A}$ = 25 °C, f = 1.75 GHz, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω , $V_{\rm D}$ = 3.6 V, $V_{\rm g}$ = – 4 V, VTR pin connected to ground; unless otherwise specified

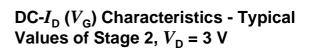
Characteristics	Symbol	Limit Values			Unit	Test	
		min.	typ.	max.	1	Conditions	
Supply current	I _{DD}	-	1.2	-	А	$P_{\rm in} = 0 \rm dBm$	
Negative supply current	I _G	-	2	3	mA	(normal operation)	
Shut-off current	ID	-	400	-	μΑ	VTR n.c.	
Negative supply current	I _G	-	10	-	μA	(shut off mode, VTR pin n.c.)	
Small signal gain	G	-	20.5	_	dB	$P_{\rm in} = -5 \rm dBm$	
Power Gain	G	14.5	15.5	-	dB	$V_{\rm D}$ = 3.6 V, $P_{\rm in}$ = 16 dBm	
Power Gain	G	17.5	18.5	-	dB	$V_{\rm D}$ = 5 V, $P_{\rm in}$ = 16 dBm	

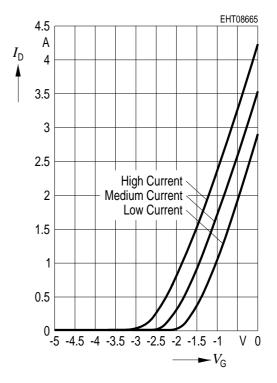
Electrical Characteristics (cont'd)

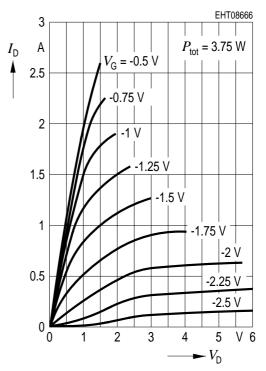

 $T_{\rm A}$ = 25 °C, f = 1.75 GHz, $Z_{\rm S} = Z_{\rm L} = 50 \Omega$, $V_{\rm D}$ = 3.6 V, $V_{\rm g}$ = – 4 V, VTR pin connected to ground; unless otherwise specified

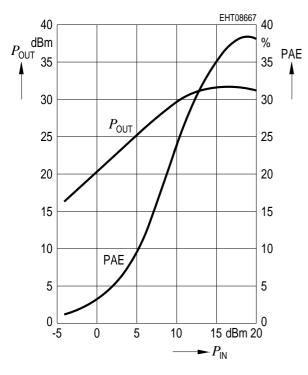
Characteristics	Symbol	L	imit Values		Unit	Test
		min.	typ.	max.		Conditions
Output Power	P ₀	30.5	31.5	-	dBm	$V_{\rm D}$ = 3.6 V, $P_{\rm in}$ = 16 dBm
Output Power	P ₀	33.5	34.5	-	dBm	$V_{\rm D}$ = 5 V, $P_{\rm in}$ = 16 dBm
Overall Power Added Efficiency	η	-	37	-	%	$V_{\rm D}$ = 3.6 V, $P_{\rm in}$ = 16 dBm
Overall Power Added Efficiency	η	-	35	-	%	$V_{\rm D}$ = 5 V, $P_{\rm in}$ = 16 dBm
Harmonics $2f_0$ $3f_0$	_	_	- 44.8 - 70	_	dBc	$P_{in} = 16 \text{ dBm},$ $V_{D} = 3.6 \text{ V},$ $P_{out} = 31.85 \text{ dBm}$
Harmonics $2f_0$ $3f_0$	_	_	- 45.1 - 75	_	dBc	$P_{in} = 16 \text{ dBm},$ $V_{D} = 5 \text{ V},$ $P_{out} = 31.85 \text{ dBm}$
Input VSWR	-	-	1.9:1	-	_	$V_{\rm D}$ = 3.6 V
Third order intercept point	IP ₃	-	41	-	dBm	f_1 = 1.7500 GHz; f_2 = 1.7502 GHz; V_D = 3.6V
Third order intercept point	IP ₃	_	44	-	dBm	f_1 = 1.7500 GHz; f_2 = 1.7502 GHz; V_D = 5 V


All RF-measurements were done in a pulsed mode with a duty cycle of 10% $(t_{on} = 0.33 \text{ ms})!$

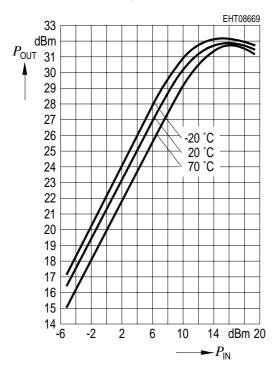



DC- $I_{\rm D}$ ($V_{\rm G}$) Characteristics - Typical Values of Stage 1, $V_{\rm D}$ = 3 V

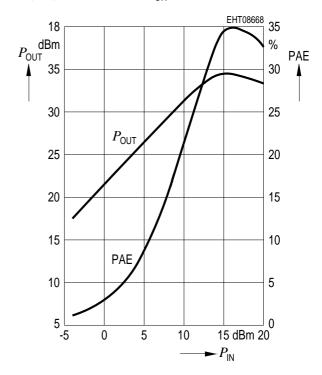

DC-Output Characteristics - Typical Values of Stage 1*


DC-Output Characteristics - Typical Values of Stage 2*

*Pin 2 ($V_{\rm TR}$) has to be open during measuring DC-characteristics!

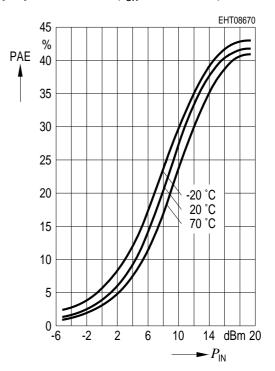


 P_{out} and PAE vs. P_{in} , $V_D = 3.6$ V, $V_G = -4$ V, f = 1.75 GHz, pulsed with a duty cycle of 10% ($t_{on} = 0.33$ ms)



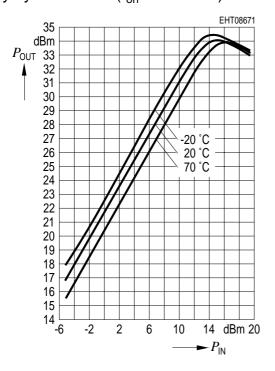
Output Power at Different Temperatures, $V_{\rm D}$ = 3.6 V,

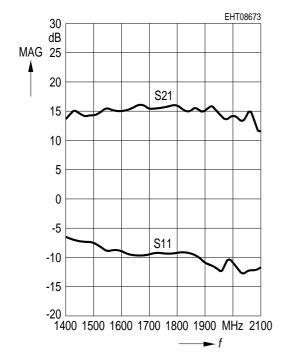
 $V_{\rm G}$ = -4 V, f = 1.75 GHz, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)



 P_{out} and PAE vs. P_{in} , $V_D = 5$ V, $V_G = -4$ V, f = 1.75 GHz, pulsed with a duty cycle of 10% ($t_{on} = 0.33$ ms)

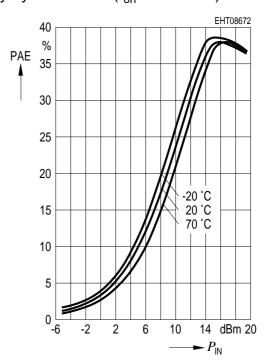
Power Added Efficiency at Different Temperatures, $V_{\rm D}$ = 3.6 V,


 $V_{\rm G}$ = -4 V, *f* = 1.75 GHz, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

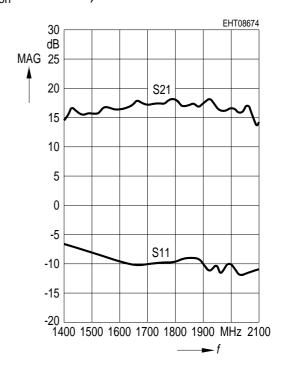


Output Power at Different

Temperatures, $V_{\rm D} = 5$ V, $V_{\rm G} = -4$ V, f = 1.75 GHz, pulsed with a duty cycle of 10% ($t_{\rm on} = 0.33$ ms)

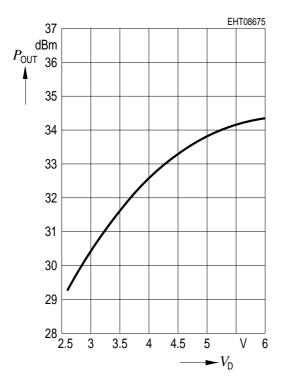


Measured S-Parameter at $V_{\rm D}$ = 3.6 V and $P_{\rm in}$ = 16 dBm, $V_{\rm G}$ = -4 V, VTR connected to ground, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)

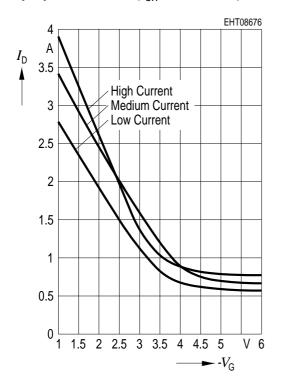


Power Added Efficiency at Different

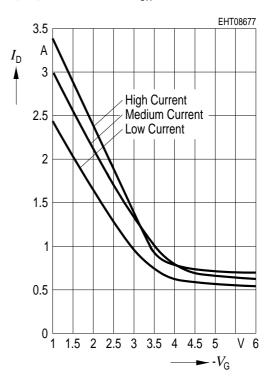
Temperatures, $V_D = 5 \text{ V}$, $V_G = -4 \text{ V}$, f = 1.75 GHz, pulsed with a duty cycle of 10% ($t_{on} = 0.33 \text{ ms}$)



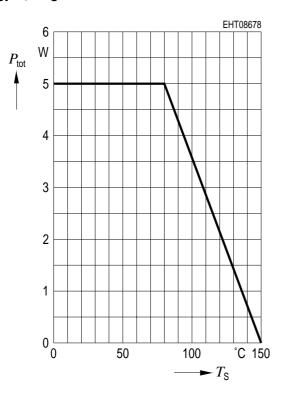
Measured S-Parameter at $V_{\rm D}$ = 5 V and $P_{\rm in}$ = 16 dBm, $V_{\rm G}$ = -4 V, VTR connected to ground, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)



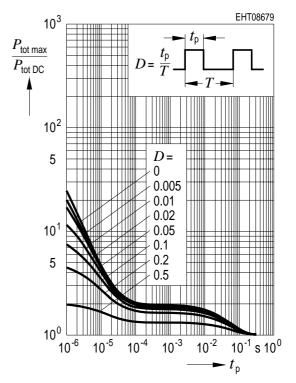
 P_{out} vs. V_D , $V_G = -4$ V, f = 1.75 GHz, $P_{in} = 16$ dBm, pulsed with a duty cycle of 10% ($t_{on} = 0.33$ ms)



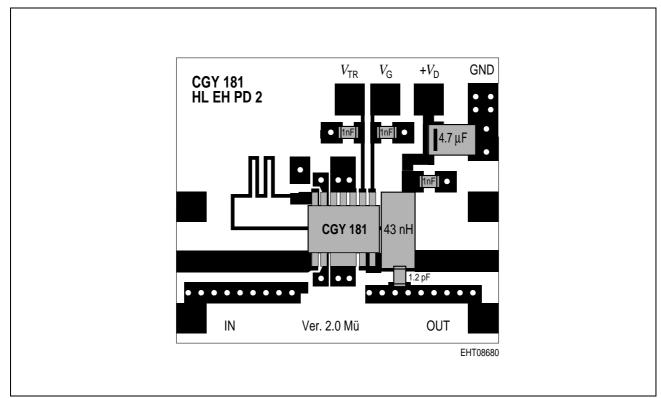
Performance of Internal Bias Control Circuit @ $V_{\rm D}$ = 3 V, $V_{\rm TR}$ = 0 V, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)


Performance of Internal Bias Control

Circuit @ $V_{\rm D}$ = 5 V, $V_{\rm TR}$ = 0 V, pulsed with a duty cycle of 10% ($t_{\rm on}$ = 0.33 ms)



Total Power Dissipation $P_{tot} = f(T_s)$



Permissible Pulse Load

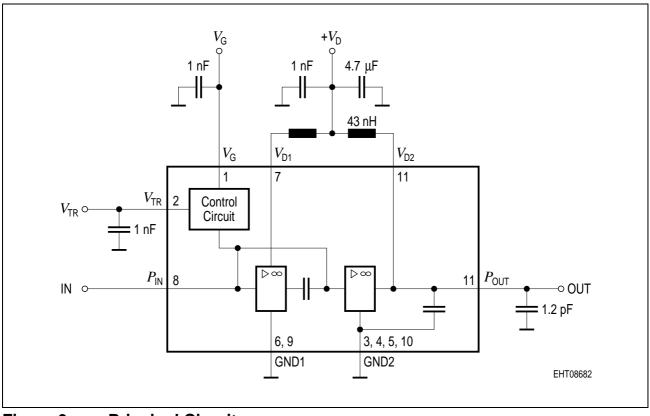
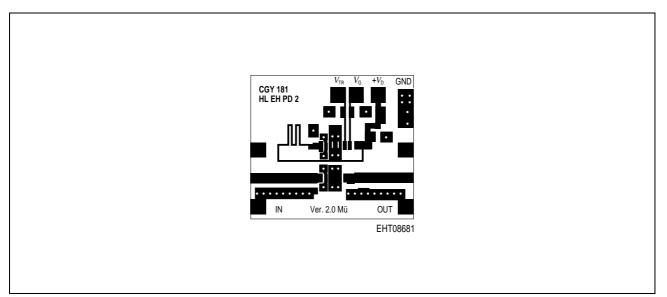


Figure 2 CGY 181 Application Board


Layout size is 30 mm \times 26 mm.

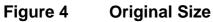

Part Type	Description
CGY 181	Infineon GaAs-MMIC
1 nF	Capacitor SMD 0805
1 nF	Capacitor SMD 0805
1 nF	Capacitor SMD 0805
1 p2	Capacitor SMD 0805
4 μ7	Capacitor SMD Tantal
43 nH	Coilcraft SMD Spring Inductor B10T (distributed by Ginsbury Electronic GmbH, Am Moosfeld 85, D-81829 München Tel.: 089/45170-223)

Figure 3 Principal Circuit

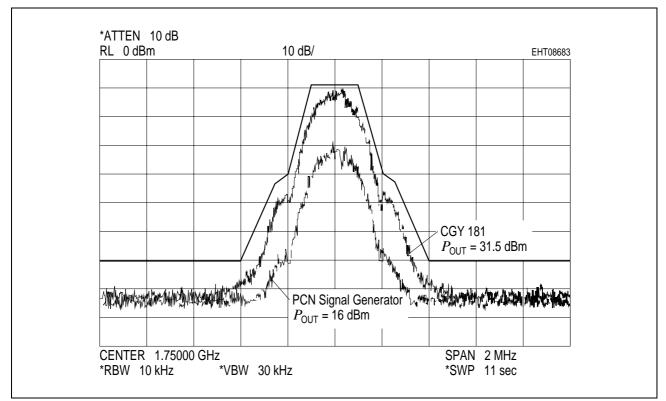


Figure 5 Emissions due to GMSK Modulation

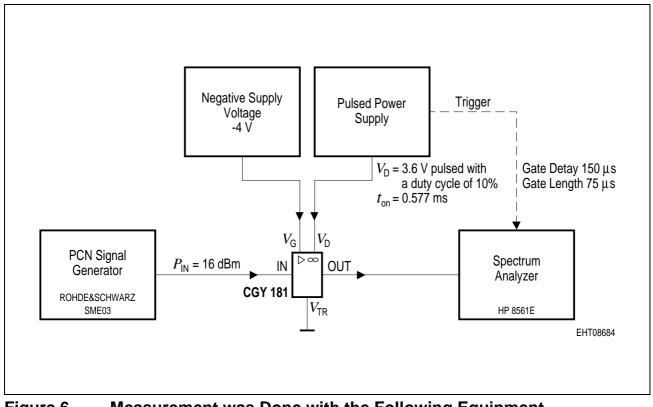


Figure 6 Measurement was Done with the Following Equipment

Application Hints

1. CW - Capability of the CGY 181

Proving the possibility of CW - operations there must be known the total power dissipation of the device. This value can be found as a function of temperature in the data sheet (**Page 9**). The CGY 181 has a maximum total power dissipation of $P_{tot} = 5$ W.

As an example we take the operating point with a drain voltage $V_D = 3.6$ V and a typical drain current of $I_D = 1.2$ A. So the maximum DC - power can be calculated to:

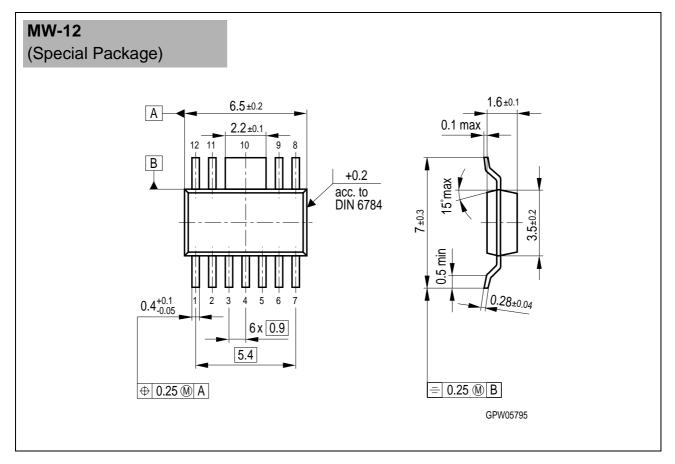
$P_{\rm DC} = V_{\rm D} \times I_{\rm D} = 4.32 \text{ W}$

This value is smaller than 5 W and CW - operation is possible.

By decoupling RF power out of the CGY 181 the power dissipation of the device can be further reduced. Assuming a power added efficiency PAE of 35% the total power dissipation P_{tot} can be calculated using the following formula:

 $P_{\text{tot}} = P_{\text{DC}} \times (1 - \text{PAE}) = 4.32 \text{ W} \times (1 - 0.35) = 2.808 \text{ W}$

2. Operation without Using the Internal Current Control


If you don't want to use the internal current control, it is recommended to connect the negative gate voltage at pin 2 ($V_{\rm TR}$) instead of pin 1 ($V_{\rm G}$). In that case $V_{\rm G}$ is not connected.

3. Biasing and Use Considerations

Biasing should be timed in such a way that the gate voltage ($V_{\rm G}$) is always applied before the drain voltages ($V_{\rm D}$), and when returning to the standby mode, the drain voltages have to be removed before the gate voltage.

Package Outlines

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device

Dimensions in mm