GaAs MMIC

Preliminary Data

- Broadband Power Amplifier [800..3500 Mhz]
- DECT, PHS, PCS, GSM, AMPS, WLAN, WLL
- Single Voltage Supply
- Operating voltage range: 2.0to 6 V
- Pout = 25.5dBm at Vd=2.4V
- Pout = 27.0dBm at Vd=3.0V
- Pout = 30.0dBm at Vd=5.0V
- Overall power added efficiency up to 50 %
- Easy external matching

ESD: Electrostatic discharge sensitive device, observe handling precautions!

Туре	Marking	Ordering code (taped)	Package
CGY 196	t.b.d.	t.b.d.	SCT598

Maximum ratings

Characteristics	Symbol	max. Value	Unit
Positive supply voltage	V _D	6	V
Supply current	Ι _D	1.0	А
Maximum input power	Pinmax	20	dBm
Channel temperature	T _{Ch}	150	°C
Storage temperature	T _{stg}	-55+150	°C
Total power dissipation ($Ts \leq 81 \ ^{\circ}C$)	P _{tot}	1.0	W
Ts: Temperature at soldering point			
Pulse peak power	P _{Pulse}	2.0	W

Thermal Resistance

Characteristics	Symbol	max. Value	Unit
Channel-soldering point	R _{thChS}	70	K/W

Functional Block Diagram

Pin #	Name	Configuration	
1	RFin/Vg	RF input power + Gate voltage [0V internal]	
2	GND	RF and DC ground	
3	VD2	Pos. drain voltage of the 2nd stage	
4	n.c.	not connected	
5	n.c.	not connected	
6	RFout/VD3	RF output power / Pos. drain voltage of the 3rd stage	
7	GND	RF and DC ground	
8	VD1	Pos. drain voltage of the 1st stage	

DC characteristics

Characteristics		Symbol	Conditions	min	typ	max	Unit
Drain current	stage 1	IDSS1	VD1=3V		45		mA
	stage 2	IDSS2	VD2=3V		65		mA
	stage 3	IDSS2	VD2=3V		340		mA
Transconductance	stage 1	gfs1	VD=3V, ID=50mA		110		mS
	stage 2	gfs2	VD=3V, ID=300mA		650		mS
	stage 3	gfs3	VD=3V, ID=300mA		650		mS

Determination of Permissible Total Power Dissipation for Continuous and Pulse Operation

The dissipated power is the power which remains in the chip and heats the device. It does not contain RF signals which are coupled out consistently.

a) Continuous Wave / DC Operation

For the determination of the permissible total power dissipation P_{tot-DC} from the diagram below it is necessary to obtain the temperature of the soldering point T_S first. There are two cases:

When R_{thSA} (soldering point to ambient) is not known: Measure T_S with a temperature sensor at the leads were the heat is transferred from the device to the board (normally at the widest source or ground lead for GaAs). Use a small sensor of low heat transport, for example a thermoelement (< 1mm) with thin wires or a temperature indicating paper while the device is operating.

• When R_{thSA} is already known: $T_S = P_{diss} \times R_{thSA} + T_A$

b) Pulsed Operation

For the calculation of the permissible pulse load P_{tot-max} the following formula is applicable:

 $P_{tot-max} = P_{tot-DC} \times Pulse factor$ $= P_{tot-DC} \times (P_{tot-max} / P_{tot-DC})$

Use the values for P_{tot-DC} as derived from the above diagram and for the

pulse factor = P_{tot-max} / P_{tot-DC}

from the following diagram to get a specific value.

Pulse factor:

 $P_{tot\text{-max}}$ should not exceed the absolute maximum rating for the dissipated power P_{Pulse} = "Pulse peak power" = 2 W

c) Reliability Considerations

This procedure yields the upper limit for the power dissipation for continuous wave (cw) and pulse applications which corresponds to the maximum allowed channel temperature. For best reliability keep the channel temperature low. The following formula allows to track the individual contributions which determine the channel temperature.

T _{ch} =	(P _{diss} x	R _{thChS}) +	Ts
Channel temperature (= junction temperature)	Power dissipated in the chip. It does not contain decoupled RF-power	Rth of device from channel to soldering point	Temperature of soldering point, measured or calculated

Electrical characteristics [3.0V DECT-Application: PCB-Layout see page 9] $(T_A = 25^{\circ}C, f=1.89 \text{ GHz}, Z_S=Z_L=50 \text{ Ohm}, unless otherwise specified)$

Characteristics	Symbol	min	typ	max	Unit
Supply current	חח	-	300	-	mA
$VD=3.0V; Pin = +0 \ dBm$					
Supply current	חחן	-	450	-	mA
VD=3.0V; Pin = -10 dBm	22				
Gain	G		32		dB
VD=3.0V;					
Output Power	Po		26.0		dBm
$VD=3.0V; P_{in}=0 dBm$					
Overall Power added Efficiency	PAE		45	-	%
VD=3.0V; P _{in} = +0 dBm					
Overall Power added Efficiency	PAE		50	-	%
VD=3.0V; P _{in} = 3 dBm					
Supply current	I _{DD}	-	450	-	mA
VD=4.8V; Pin = -10 dBm					
Supply current	I _{DD}	-	370	-	mA
VD=4.8V; Pin = 0 dBm					
Gain	G	-	32	-	dB
<u>VD=4.8V; $P_{in} = -10 \ dBm$</u>					
Output Power	Po		29		dBm
<u>VD=4.8V; $P_{in} = 0 \ dBm$</u>					
Overall Power added Efficiency	PAE		45	-	%
<u>VD=4.8V; $P_{in} = 0 \text{ dBm}$</u>	545		50		
Overall Power added Efficiency	PAE		50	-	%
$\frac{VD=4.8V; P_{in}=5 \text{ aBm}}{O(1+1)}$	001		40		
	-521		40		aв
$\frac{VD=0V}{P_{in}=0 \text{ dBm}}$		New			
	-	INO f	noquie dan	nage	-
$PIn=UdBm$, $VD \leq 3.6V$, $Z_S=50$ Onm,			for to sec.		
Load VSWR = 20:1 for all phase,		N			
	-	INO r	nodule dan	nage	-
$Pin=3dBm$, $VD \leq 5.0V$, $Z_S = 50 Ohm$,			for 10 sec.		
Load VSWR = 20:1 for all phase,					
Stability	-	Alls		itput	-
$Pin=0dBm, VD=3.6V, Z_S=50 Onm,$		more	inan 70 dB	below	
$\frac{Load \ V S VVR = 3:1 \ for \ all \ pnase}{S V V V V S VVR = 3:1 \ for \ all \ pnase}$		desi	red signal	level	
	-	Alls	spurious ou	Itput	-
$PIN=30BM$, $VD=5.0V$, $Z_S=50$ Ohm,		more	inan 70 dB	WOI9Q	
Load VSVVR = 3:1 for all phase,		desi	rea signal l	ievei	

Output power and power added efficiency

pulsed mode: T=417 μ s, duty cycle 12.5%

Electrical characteristics [3.0V DECT-Application: PCB-Layout see page 9]

Electrical characteristics [3.0V DECT-Application: PCB-Layout see page 9] S-Parameter [pulsed mode: T=417µs, duty cycle 12.5%, Pin=0dBm,Vd=3.3V]

Pout,Id = f (Vd) | Pin=0dBm [pulsed mode: T=417µs, duty cycle 12.5%]

Electrical characteristics [3.0V DECT-Application: PCB-Layout see page 9]

CGY 196 V 1.1 C6 SIEMEN ^{R1}D1 ••• n.c. n.c. D3 • C C5 • 20 C1 = C2 = C3 = 100 nFC4 = 3.3 pFC5 = C6 = 680 pFR1 = 2.7 Ohm

Test Board Layout [3.0V DECT-Application f=1.89GHz]

Electrical characteristics [2.4V DECT-Application: PCB-Layout see page 12] $(T_A = 25^{\circ}C, f=1.89 \text{ GHz}, Z_S=Z_L=50 \text{ Ohm}, unless otherwise specified)$

Supply current - 360 - mA	1
	-
$VD=2.4V$; $Pin = +0 \ dBm$	
Supply current Ing - 450 - m/	١
$VD=2.4V; Pin = -10 \ dBm$	
Output Power Po 25.7 dB	n
$VD=2.4V; P_{in}=0 dBm$	
Overall Power added Efficiency PAE 44 - %	
$VD=2.4V; P_{in} = +0 dBm$	
Supply current I _{DD} - 350 - m/	٩
VD=2.2V; Pin = +0 dBm	
Supply current I _{DD} - 450 - mA	۹.
VD=2.2V; Pin = -10 dBm	
Output Power P_O 25.1dBi	n
$VD=2.2V; P_{in}=0 dBm$	
Overall Power added EfficiencyPAE42-%	
$VD=2.2V; P_{in} = +0 \ dBm$	
Supply current I _{DD} - 370 - m/	١
$\frac{VD=3.0V; Pin = +0 \ dBm}{1000}$	
Supply current I _{DD} - 450 - m/	١
VD=3.0V; PIn = -10 dBm D 07.0 100	
Output Power P_0 27.0 dBi	n
$\frac{VD=3.0V; P_{in}=0.0BM}{Overell Perver edded Efficiency} \qquad PAE \qquad 44$	
VP 2 01// Pr + 0 dPm	
$\frac{VD=3.0V; P_{\text{in}} = +0.0BIII}{Off \text{ logistics}}$	
$-321 \qquad 34 \qquad 0E$,
$vD=0v, P_{III} = 0.0DIII$	
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	
$FIII=00BIII, VD \le 3.0V, Z_{S}=50 OIIIII,$	
Load mismatch	
$\frac{1}{2} \frac{1}{2} \frac{1}$	
$FIII=50BIII, VD \leq 5.0V, Z_S=50 OIIIII,$	
$\frac{L0a0 \ VSVVR = 20.1 \ I01 \ all \ phase,}{Stobility}$	
Stability - All spurious output - $Pin=0dPm$ $VD=2.6V/Z=50.0bm$ more than Z0 dP below	
I ord VSWR = 3:1 for all phase	
Stability All sourious output	
$Pin=3dRm //D=5.0V/Z_{a}=50.0hm$ = Mill spullous oulput = Pin=3dRm //D=5.0V/Z_{a}=50.0hm	
I ord VSWR = 3.1 for all phase	

Pout,Id = f (Vd) | Pin=0dBm [pulsed mode: T=417µs, duty cycle 12.5%]

Test Board Layout [2.4V DECT-Application f=1.89GHz]

SIEMENS	High Frequency Semiconductors				
Туре	Package	File	Date		
CGY196 GaAs MMIC	SCT598	D:\Projekte\AKTUELL\EH_DB\lie ferung_pdf\Lieferung\word\cgy19	26.02.1998		
Key-word					

Notes on Processing

Preliminary soldering recommendation

•	Foot Print	drawing C63060-A2123-A001-01-0027		
•	Soldering	wave soldering: reflow soldering: (IR or VPR)	unsuitable suitable	
	soldering profile:			
	ramp-up preheating ramp-up peak exposure to molten solder typ. solder temperature	temperature grac time at 100 - 150 temperature grac above 183°C typ. 215-245°C	dient: °C: dient	max. + 2 K/sec min. 90 sec. max. + 6 K/sec max. 150 sec max. 30 sec.
	peak temperature ramp-down	max. peak 260°C max. 10 temperature gradient: min 6° (see also soldering standard profile of dat 'package information')		max. 10 sec. min 6°C/sec ofile of databook
	comments	slow ramp-up, long preheating phase and lo temperature recommended		
•	Solder paste thickness	150 - 200 µm		
•	Control of soldering (voids)	 visual inspection cross sectioning measurement of case temperature / thermal resistance case to ambient 		
•	Jedec A-112A	level 1 stor	age floor life at	: 30°C/90% unlimited
•	IPC-9501 (IPC-4202)	level 111 stor IR/0	age floor life at Convection; ma	: 30°C/60% unlimited x. 245°C; < 6K/sec.

Published by Siemens AG, Bereich Halbleiter, Marketing-Kommunikation, Balanstraße 73, D-81541 München.

copyright Siemens AG 1996. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and cirucits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery, and prices please contact the Offices of Semiconductor Group in Germany or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the type in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.