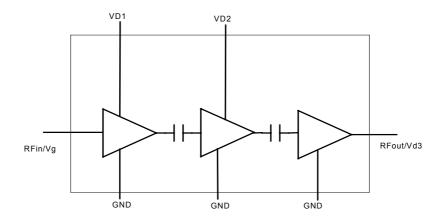


Datasheet

- * Broadband Power Amplifier [800..3500 Mhz]
- * DECT,PHS,PCS,GSM,AMPS,WLAN,WLL
- * Single Voltage Supply
- * Operating voltage range: 2.0to 6 V
- * Pout = 25.5dBm at Vd=2.4V
- * Pout = 26.0dBm at Vd=3.0V
- * Pout = 29.0dBm at Vd=5.0V
- * Overall power added efficiency up to 50 %
- * Easy external matching


Туре	Marking	Ordering code (taped)	Package
CGY 196	D6s	Q62702-G0080	SCT598

Maximum ratings

Characteristics	Symbol	max. Value	Unit
Positive supply voltage	V_D	6	V
Supply current	ID	1.0	А
Maximum input power	Pinmax	20	dBm
Channel temperature	T _{Ch}	150	°C
Storage temperature	T _{stg}	-55+150	°C
Total power dissipation (Ts ≤ 80 °C)	P _{tot}	1.0	W
Ts: Temperature at soldering point			
Pulse peak power	P _{Pulse}	2.0	W
Thermal Resistance			
Channel-soldering point	R _{thChS}	70	K/W

Functional Block Diagram

Pin #		Configuration
1	RFin/Vg	RF input power + Gate voltage [0V internal]
2	GND	RF and DC ground
3	VD2	Pos. drain voltage of the 2nd stage
4	n.c.	not connected
5	n.c.	not connected
6	RFout/VD3	RF output power / Pos. drain voltage of the 3rd stage
7	GND	RF and DC ground
8	VD1	Pos. drain voltage of the 1st stage

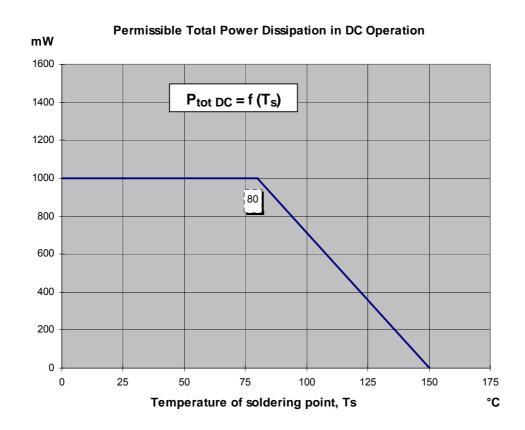
DC characteristics

Characteristics		Symbol	Conditions	min	typ	max	Unit
Drain current	stage 1	IDSS1	VD1=3V	30	45	75	mA
	stage 2	IDSS2	VD2=3V	45	65	110	mA
	stage 3	IDSS2	VD2=3V	230	340	515	mA
Transconductance	stage 1	gfs1	VD=3V, ID=50mA	50	90	130	mS
	stage 2	gfs2	VD=3V, ID=300mA	80	130	170	mS
	stage 3	gfs3	VD=3V, ID=300mA	150	220	300	mS

GaAs MMIC

CGY 196

<u>Determination of Permissible Total Power Dissipation for Continuous and Pulse</u> Operation


The dissipated power is the power which remains in the chip and heats the device. It does not contain RF signals which are coupled out consistently.

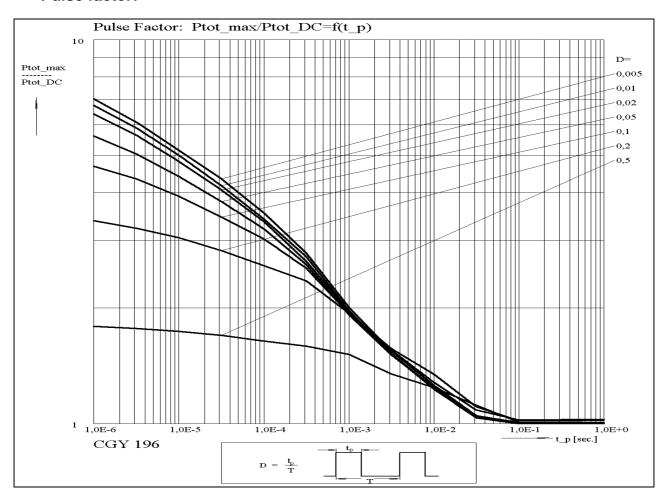
a) Continuous Wave / DC Operation

For the determination of the permissible total power dissipation P_{tot-DC} from the diagram below it is necessary to obtain the temperature of the soldering point T_S first. There are two cases:

- When R_{thSA} (soldering point to ambient) is not known: Measure T_S with a temperature sensor at the
 leads were the heat is transferred from the device to the board (normally at the widest source or ground
 lead for GaAs). Use a small sensor of low heat transport, for example a thermoelement (< 1mm) with
 thin wires or a temperature indicating paper while the device is operating.
- When RthSA is already known:

$$T_S = P_{diss} x R_{thSA} + T_A$$

b) Pulsed Operation


For the calculation of the permissible pulse load P_{tot-max} the following formula is applicable:

Use the values for P_{tot-DC} as derived from the above diagram and for the pulse factor = $P_{tot-max}$ / P_{tot-DC}

from the following diagram to get a specific value.

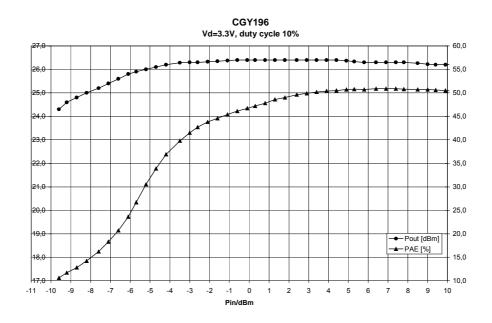
Pulse factor:

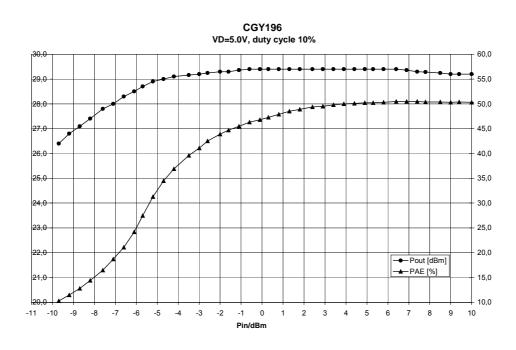
 $P_{\text{tot-max}}$ should not exceed the absolute maximum rating for the dissipated power P_{Pulse} = "Pulse peak power" = 2 W

c) Reliability Considerations

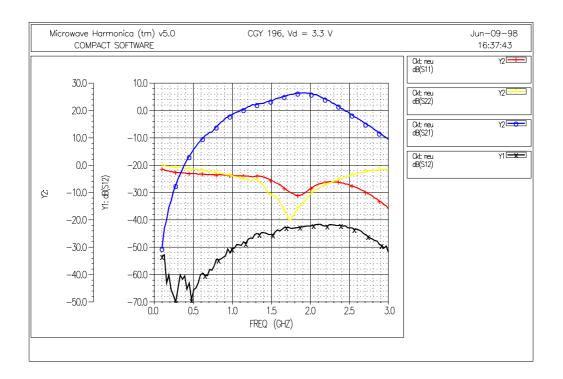
This procedure yields the upper limit for the power dissipation for continuous wave (cw) and pulse applications which corresponds to the maximum allowed channel temperature. For best reliability keep the channel temperature low. The following formula allows to track the individual contributions which determine the channel temperature.

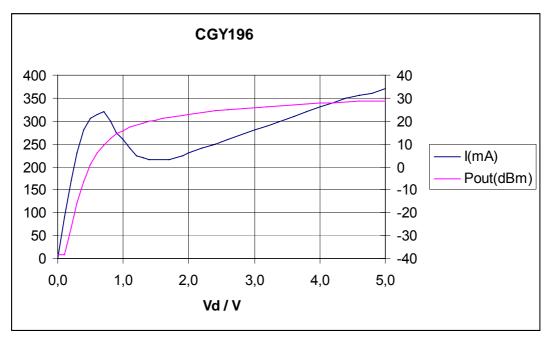
T _{ch} =	(P _{diss} / Pulse Factor x	R _{thChS}) +	T _S
Channel temperature (= junction temperature)	Power dissipated in the chip, divided by the applicable puls factor (= 1 for DC and CW). It does not contain decoupled RF- power	Rth of device from channel to soldering point	Temperature of soldering point, measured or calculated


(T_A = 25°C , f=1.89 GHz, Z_S=Z_L=50 Ohm, unless otherwise specified)

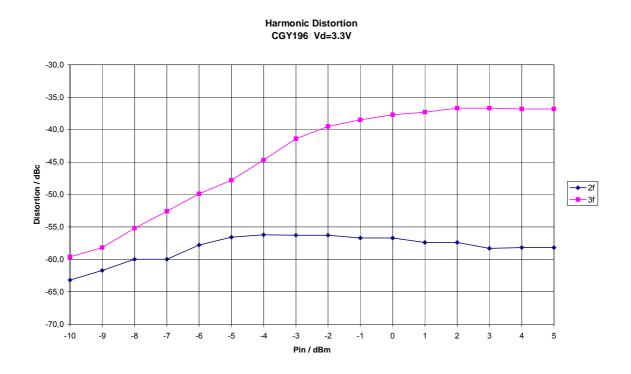

Characteristics	Symbol	min	typ	max	Unit
Supply current VD=3.0V; Pin = +0 dBm	I _{DD}	-	300	500	mA
Supply current VD=3.0V; Pin = -10 dBm	I _{DD}	-	450	700	mA
Gain VD=3.0V; P _{in} = -10 dBm	G	27	32	34	dB
Output Power VD=3.0V; P _{in} = 0 dBm	Po	24.0	26.0	27.5	dBm
Overall Power added Efficiency VD=3.0V; P _{in} = +0 dBm	PAE	30	45	-	%
Overall Power added Efficiency VD=3.0V; P _{in} = 3 dBm	PAE	35	50	-	%
Supply current VD=4.8V; Pin = -10 dBm	I _{DD}	-	450	-	mA
Supply current VD=4.8V; Pin = 0 dBm	I _{DD}	-	330	600	mA
Gain VD=4.8V; P _{in} = -10 dBm	G	-	32	-	dB
Output Power VD=4.8V; P _{in} = 0 dBm	Po	26.5	28	30	dBm
Overall Power added Efficiency VD=4.8V; P _{in} = 0 dBm	PAE	30	40	-	%
Overall Power added Efficiency VD=4.8V; P _{in} = 5 dBm	PAE	30	45	-	%
Off Isolation VD=0V; P _{in} = 0 dBm	-S21		40		dB
Load mismatch $Pin=0dBm$, $VD \sim V$, $Z_S=50$ Ohm, Load VSWR = 20:1 for all phase,	-	No module damage for 10 sec.			-
Load mismatch $Pin=3dBm$, VD 5.0V, Z_S =50 Ohm, Load $VSWR$ = 20:1 for all phase,	-	No module damage for 10 sec.		-	
Stability Pin=0dBm, VD=3.6V, Z_S =50 Ohm, Load VSWR = 3:1 for all phase	-	All spurious output more than 70 dB below desired signal level		-	
Stability Pin=3dBm , VD=5.0V , Z_S =50 Ohm, Load VSWR = 3:1 for all phase,	-	All s more t	purious ou han 70 dE ed signal	utput 3 below	-

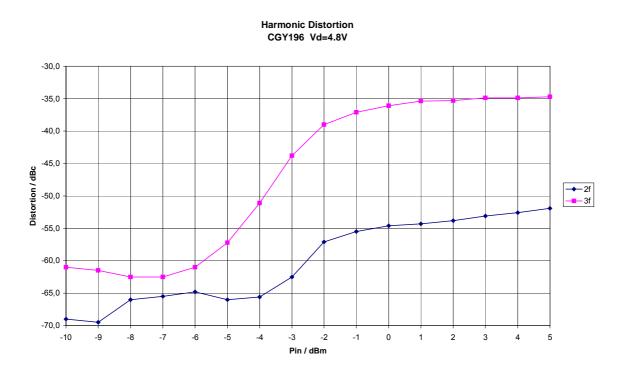
Output power and power added efficiency


pulsed mode: T=417μs, duty cycle 12.5%

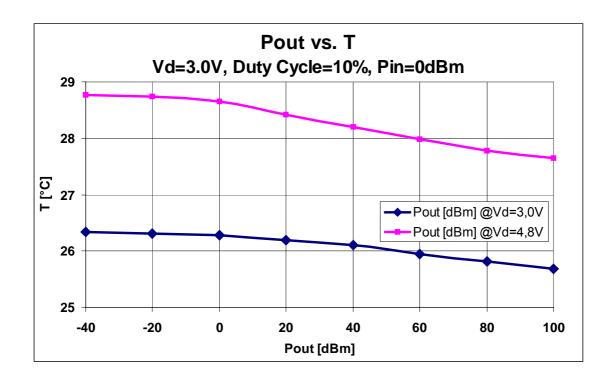


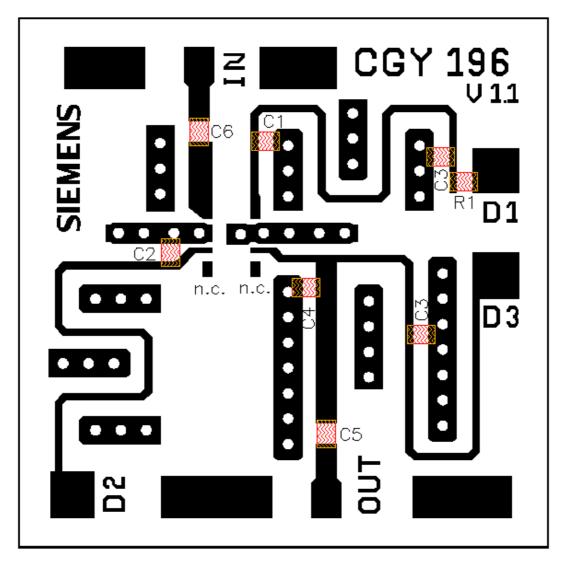
S-Parameter [pulsed mode: T=417µs, duty cycle 12.5%, Pin=0dBm,Vd=3.3V]


Pout,Id = f (Vd) | Pin=0dBm [pulsed mode: T=417μs, duty cycle 12.5%]



TriQuint Semiconductor Europe October 1st, 2002


page 7 7/18



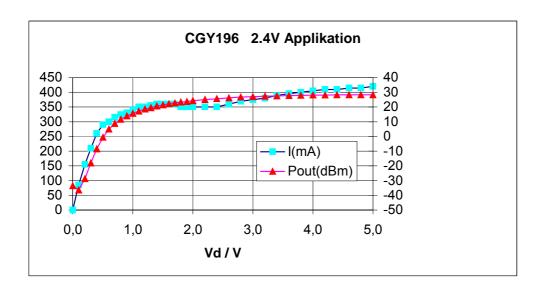
Test Board Layout [3.0V DECT-Application f=1.89GHz]

C1 = C2 = C3 = 100nF

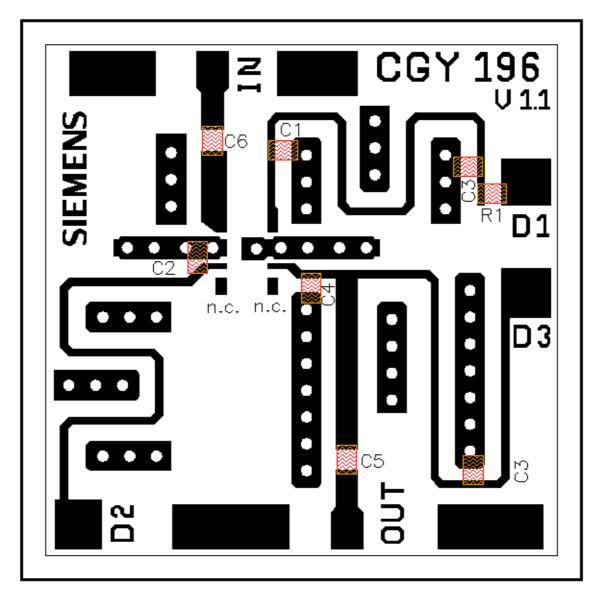
C4 = 3.3 pF

C5 = C6 = 680 pF

R1 = 2.7 Ohm


$(T_A = 25^{\circ}C, f=1.89 \text{ GHz}, Z_S=Z_L=50 \text{ Ohm}, unless otherwise specified})$

Characteristics	Symbol	min	typ	max	Unit
Supply current VD=2.4V; Pin = +0 dBm	I _{DD}	-	360	-	mA
Supply current VD=2.4V; Pin = -10 dBm	I _{DD}	-	450	-	mA
Output Power VD=2.4V; P _{in} = 0 dBm	Po		25.7		dBm
Overall Power added Efficiency VD=2.4V; P _{in} = +0 dBm	PAE		44	-	%
Supply current VD=2.2V; Pin = +0 dBm	I _{DD}	-	350	-	mA
Supply current VD=2.2V; Pin = -10 dBm	I _{DD}	-	450	-	mA
Output Power VD=2.2V; P _{in} = 0 dBm	Po		25.1		dBm
Overall Power added Efficiency VD=2.2V; P _{in} = +0 dBm	PAE		42	-	%
Supply current VD=3.0V; Pin = +0 dBm	I _{DD}	-	370	-	mA
Supply current VD=3.0V; Pin = -10 dBm	I _{DD}	-	450	-	mA
Output Power VD=3.0V; P _{in} = 0 dBm	Po		27.0		dBm
Overall Power added Efficiency VD=3.0V; P _{in} = +0 dBm	PAE		44	-	%
Off Isolation VD=0V; P _{in} = 0 dBm	-S21		34		dB


Load mismatch Pin=0dBm , VD V , Z _S =50 Ohm, Load VSWR = 20:1 for all phase,	-	No module damage for 10 sec.	-
Load mismatch Pin=3dBm , VD 5.0V , Z_S =50 Ohm, Load VSWR = 20:1 for all phase,	-	No module damage for 10 sec.	-
Stability Pin=0dBm, VD=3.6V, Z_S =50 Ohm, Load VSWR = 3:1 for all phase	-	All spurious output more than 70 dB below desired signal level	-
Stability $Pin=3dBm$, $VD=5.0V$, $Z_S=50$ Ohm, $Load\ VSWR=3:1$ for all phase,	-	All spurious output more than 70 dB below desired signal level	-

Pout,Id = f (Vd) | Pin=0dBm [pulsed mode: T=417μs, duty cycle 12.5%]

Test Board Layout [2.4V DECT-Application f=1.89GHz]

C1 = C2 = C3 = 100nF

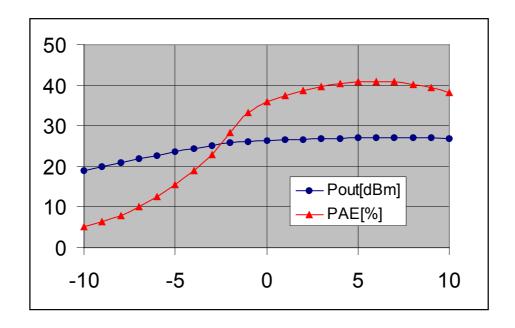
C4 = 3.3 pF

C5 = C6 = 680 pF

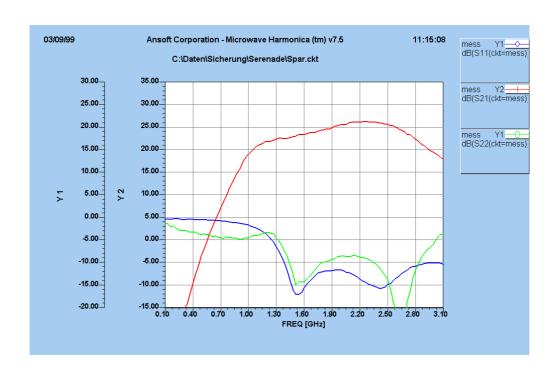
R1 = 2.7 Ohm

Electrical characteristics [2.4GHZ ISM-Application]

$(T_A = 25^{\circ}C, f=1.89 \text{ GHz}, Z_S=Z_L=50 \text{ Ohm}, unless otherwise specified})$

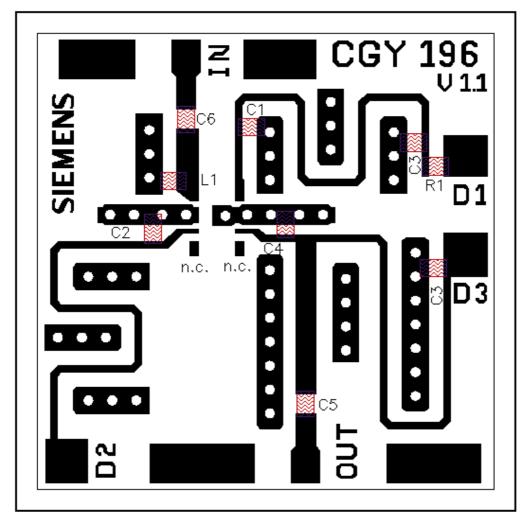

Characteristics	Symbol	min	typ	max	Unit
Supply current VD=3.3V; Pin = +3 dBm	I _{DD}	-	360	-	mA
Supply current VD=3.3V; Pin = -10 dBm	I _{DD}	ı	450	-	mA
Output Power $VD=3.3V$; $P_{in}=+3 dBm$	Po		27.0		dBm
Overall Power added Efficiency VD=3.3V; P _{in} = +3 dBm	PAE		40	-	%
Off Isolation VD=0V; P _{in} = 3 dBm	-S21		34		dB

Load mismatch $Pin=0dBm$, $VD \sim V$, $Z_S=50$ Ohm , Load VSWR = 20:1 for all phase,	-	No module damage for 10 sec.	-
Load mismatch Pin=3dBm , VD 5.0V , Z _S =50 Ohm, Load VSWR = 20:1 for all phase,	-	No module damage for 10 sec.	-
Stability $Pin=0dBm, VD=3.6V, Z_S=50 Ohm,$ $Load VSWR = 3:1 for all phase$	-	All spurious output more than 70 dB below desired signal level	-
Stability $Pin=3dBm$, $VD=5.0V$, $Z_S=50$ Ohm, $Load\ VSWR=3:1$ for all phase,	-	All spurious output more than 70 dB below desired signal level	-



Electrical characteristics [2.4GHZ ISM-Application]

Pout,PAE = f (Pin) | Vd=3.3V f=2.4GHz [pulsed mode: T=417μs, duty cycle 12.5%]



S-Parameter Vd=3.3V Pin=0dBm [pulsed mode: T=417μs, duty cycle 12.5%]

Test Board Layout [2.4 GHz ISM - Application]

$$C1 = C2 = C3 = 100 nF$$
 $L1 = 3 n9$

C4 = 1p8

C5 = C6 = 1 nF

R1 = 2.7 Ohm

TriQuint		European Operations			
Type CGY196 GaAs MMIC	Package SCT598				
Notes on Process	sing				

Preliminary soldering recommendation

• Foot Print drawing C63060-A2123-A001-01-0027

• Soldering wave soldering: unsuitable

reflow soldering: suitable, max. 3 times

(IR or VPR)

soldering profile:

ramp-up peak

exposure to molten solder

ramp-up preheating temperature gradient: max. + 2 K/sec

time at 100 - 150 °C: min. 90 sec. temperature gradient max. + 6 K/sec above 183°C max. 150 sec

typ. solder temperature typ. 215-245°C max. 30 sec. peak temperature max. peak 260°C max. 10 sec.

ramp-down temperature gradient: min. - 6°C/sec

(see also soldering standard profile of databook

'package information')

comments slow ramp-up, long preheating phase and low max.

temperature recommended

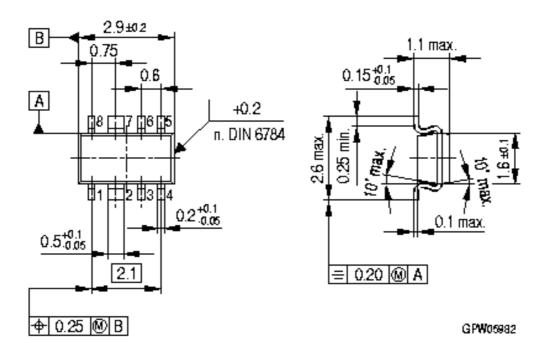
• Solder paste thickness 150 - 200 µm

• Control of soldering (voids) - visual inspection

- cross sectioning

 measurement of case temperature / thermal resistance case to ambient

• **Jedec A-112A** level 1 storage floor life at 30°C/90%


unlimited

• IPC-9501 (IPC-4202) level 111 storage floor life at 30°C/60%

unlimited

IR/Convection; max. 245°C; < 6K/sec.

Published by TriQuint Semiconductor GmbH, Marketing, Konrad-Zuse-Platz 1, D-81829 Munich.

copyright TriQuint Semiconductor GmbH 2002. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and cirucits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery, and prices please contact the Offices of TriQuint Semiconductor in Germany or the TriQuint Semiconductor Companies and Representatives worldwide.

Due to technical requirements components may contain dangerous substances. For information on the type in question please contact your nearest TriQuint Semiconductors Office.