Parameter	Rating	Units
Blocking Voltage	60	$\mathrm{~V}_{\mathrm{P}}$
Load Current	400	mA
Max On-resistance	2	Ω
LED Current to operate	2	mA

Features

- Designed for use in security systems complying with EN50130-4
- Small 4-Pin SOP Package
- TTL/CMOS Compatible input
- Arc-Free With No Snubbing Circuits
- $1500 \mathrm{~V}_{\text {rms }}$ Input/Output Isolation
- No EMI/RFI Generation
- Immune to radiated EM fields
- SMD Pick \& Place, Wave Solderable
- Tape \& Reel Version Available

Applications

- Security
- Passive Infrared Detectors (PIR)
- Data Signalling
- Sensor Circuitry
- Instrumentation
- Multiplexers
- Data Acquisition
- Electronic Switching
- I/O Subsystems
- Meters (Watt-Hour, Water, Gas)
- Medical Equipment-Patient/Equipment Isolation
- Aerospace
- Industrial Controls

Description

The CPC1014N is a miniature 1-Form-A solid state relay in a 4-Pin SOP package that employs optically coupled MOSFET technology to provide $1500 \mathrm{~V}_{\text {rms }}$ of input/output isolation. The super efficient MOSFET switches and photovoltaic die use Clare's patented OptoMOS architecture. The optically coupled output is controlled by a highly efficient GaAIAs infrared LED. The CPC1014N uses Clare's state of the art, double-molded vertical construction packaging to produce one of the world's smallest relays. The CPC1014N offers board space savings of at least 20\% over the competitor's larger 4-Pin SOP relay.

Approvals

- UL Recognized Component: File \# E76270
- EN/IEC 60950-1 Compliant
- CSA Certified Component: Certificate \# 1172007

Ordering Information

Part \#	Description
CPC1014N	4-Pin SOP (100/tube)
CPC1014NTR	4-Pin SOP (2000/reel)

Pin Configuration

Absolute Maximum Ratings (@ $25^{\circ} \mathrm{C}$)

Parameter	Ratings	Units
Blocking Voltage	60	$\mathrm{~V}_{\mathrm{p}}$
Reverse Input Voltage	5	V
Input Control Current Peak (10ms)	50	mA
	1	A
Input Power Dissipation	70	mW
Total Power Dissipation ${ }^{1}$	400	mW
Isolation Voltage, Input to Output	1500	$\mathrm{~V}_{\text {rms }}$
Operational Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

${ }^{1}$ Derate Linearly $3.33 \mathrm{mw} /{ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at conditions beyond those indicated in the operational sections of this data sheet is not implied.

Electrical Characteristics

Parameter	Conditions	Symbol	Min	Typ	Max	Units
Output Characteristics @ 25 ${ }^{\circ} \mathrm{C}$						
Load Current						
Continuous ${ }^{1}$	$\mathrm{I}_{\mathrm{F}}=2 \mathrm{~mA}$	I_{L}	-	-	400	mA
Peak	$t=10 \mathrm{~ms}$	ILPK	-	-	1	A_{p}
On-Resistance ${ }^{2}$	$\mathrm{I}_{\mathrm{L}}=400 \mathrm{~mA}$	$\mathrm{R}_{\text {ON }}$	-	-	2	Ω
Off-State Leakage Current	$\mathrm{V}_{\mathrm{L}}=60 \mathrm{~V}_{\mathrm{P}}$	$\mathrm{I}_{\text {LEAK }}$	-	-	1	$\mu \mathrm{A}$
Switching Speeds						
Turn-On	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{L}}=10 \mathrm{~V}$	t_{ON}	-	0.47	2	ms
Turn-Off		$\mathrm{t}_{\text {OFF }}$	-	0.22	1	
Output Capacitance	50V; f=1MHz	$\mathrm{C}_{\text {OUT }}$	-	40	-	pF
Capacitance Input to Output	-	.	-	1	-	pF
Input Characteristics @ $25^{\circ} \mathrm{C}$						
Input Control Current ${ }^{3}$	$\mathrm{I}_{\mathrm{L}}=400 \mathrm{~mA}$	I_{F}	-	0.25	2	mA
Input Dropout Current	-	I_{F}	0.1	0.2	-	mA
Input Voltage Drop	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}$	V_{F}	0.9	1.2	1.4	V
Reverse Input Current	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	$I_{\text {R }}$	-	-	10	$\mu \mathrm{A}$

[^0]2 Measurement taken within 1 second of on time.
3 For applications requiring high temperature operation (greater than $60^{\circ} \mathrm{C}$) an LED drive current of 4 mA is recommended.

PERFORMANCE DATA*

[^1] contact our application department.

PERFORMANCE DATA*

CPC1014N

MANUFACTURING INFORMATION

Moisture Sensitivity

Clare has characterized the moisture reflow sensitivity of this package, and has determined that this component must be handled in accordance with IPC/JEDEC standard J-STD-033 moisture sensitivity level (MSL), level 3 classification.

Soldering Reflow Profile

For proper assembly, the component must be processed in accordance with the current revision of IPC/JEDEC standard J-STD-020. Failure to follow the recommended guidelines may cause permanent damage to the device resulting in impaired performance and/or a reduced lifetime expectancy.

Tape and Reel Packaging for 4-Pin SOP Package

NOTE: Tape dimensions not shown comply with JEDEC Standard EIA-481-2
For additional information please visit our website at: www.clare.com
Clare, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. Neither circuit patent licenses nor indemnity are expressed or implied. Except as set forth in Clare's Standard Terms and Conditions of Sale, Clare, Inc. assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.

The products described in this document are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or where malfunction of Clare's product may result in direct physical harm, injury, or death to a person or severe property or environmental damage. Clare, Inc. reserves the right to discontinue or make changes to its products at any time without notice.

[^0]: ${ }^{1}$ Load current derates linearly from $400 \mathrm{~mA} @ 25^{\circ} \mathrm{C}$ to $200 \mathrm{~mA} @ 80^{\circ} \mathrm{C}$.

[^1]: *The Performance data shown in the graphs above is typical of device performance. For guaranteed parameters not indicated in the written specifications, please

