

CSL13003

TO-92 PLASTIC PACKAGE NPN SILICON PLANAR EPITAXIAL,HIGH SPEED, HIGH VOLTAGE SWITCHING TRANSISTOR

Applications

Suitable for Lighting, Switching Regulator and Motor Control

ABSOLUTE MAXIMUM RATINGS

DESCRIPTION	SYMBOL	VALUE	UNIT
Collector Base Voltage	V_{CBO}	600	V
Collector Emitter (sus) Voltage	V_{CEO}	400	V
Emitter Base Voltage	V_{EBO}	9.0	V
Collector Current Continuous	I _C	1.5	Α
Peak	**I _{CM}	3.0	Α
Power Dissipation @ T _a =25°C	P _C	1.1	W
Derate Above 25°C		8.8	mW/ °C
Power Dissipation @ T _{Lead} =25°C	P_{D}	2.0	W
Derate Above 25°C		16	mW/ °C
Operating And Storage Junction Temperature	тт	- 65 to +150	°C
Range	T_{j}, T_{stg}	- 03 10 + 130	

THERMAL RESISTANCE

Junction to Case, T _c =25°C	R _{th (j-c)}	48.0	°C/W
Junction to Lead	R _{th (j-L)}	62.5	°C/W
Junction to Ambient in free air	R _{th (j-a)}	113.6	°C/W

ELECTRICAL CHARACTERISTICS (T_a=25°C unless specified otherwise)

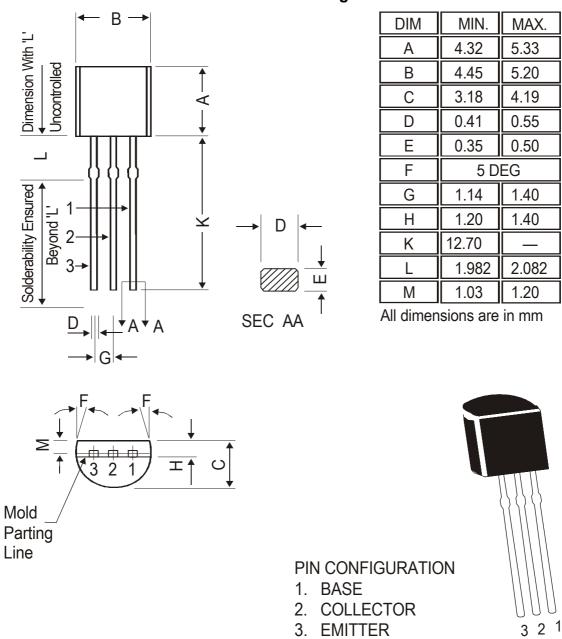
DESCRIPTION	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Collector Base Voltage	V_{CBO}	I _C =1mA, I _E =0	600			V
Collector Emitter (sus) Voltage	*V _{CEO (sus)}	I_C =10mA, I_B =0	400			V
Collector Cut Off Current	I _{CBO}	V _{CB} =600V _, I _E =0			1.0	mA
		V _{CB} =600V _, I _E =0, T _c =100°C			5.0	mA
Emitter Cut Off Current	I _{EBO}	V_{EB} =9V, I_{C} =0			1.0	mA
DC Current Gain	*h _{FE}	I _C =0.3A, V _{CE} =2V (Note1)	10		30	
		I_C =0.5A, V_{CE} =2V	8.0		40	
		$I_C=1A, V_{CE}=2V$	4.0		25	
Collector Emitter Saturation Voltage	*V _{CE (sat)}	I _C =0.5A, I _B =0.1A			0.5	V
		I _C =1A, I _B =0.25A			1.0	V
		I _C =1.5A, I _B =0.5A			3.0	V
		I _C =1A, I _B =0.25A,T _c =100°C			1.0	V
Base Emitter Saturation Voltage	*V _{BE (sat)}	I _C =0.5A, I _B =0.1A			1.0	V
		I _C =1A, I _B =0.25A			1.2	V
		I _C =1A, I _B =0.25A,T _c =100°C			1.1	V

* Pulse Test: PW=300ms, Duty Cycle=2%

^{**} Pulse Test: Pulse Width=5ms, Duty Cycle=10%

DYNAMIC CHARACTERISTICS

DESCRIPTION	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Current Gain Bandwidth Product	f _⊤	I _C =100mA, V _{CE} =10V, f=1MHz	4.0			MHz
Output Capacitance	C_{ob}	V_{CB} =10V, f=0.1MHz		21		pF

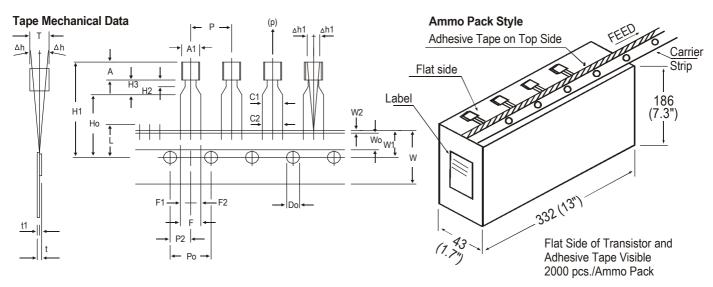

SWITCHING TIME

DESCRIPTION	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
Turn On Time	t _{on}	V _{CC} =125V			1.1	μS
Fall Time	t _f	I _{B1} =0.2A, I _{B2} =0.2A			0.7	μS
Storage Time	t_{stg}	I _C =1A			4.0	μS

Note (1) h _{FE} Classifications:-	Α	В	С	E	F
Note (1):- Product is pre selected in DC current gain (Groups A to F). RECTRON reserves the right to ship any of the groups according to production availability.	10-16	15-19	18-22	21-25	24-30
MARKING	CSL 13003 A	CSL 13003 B	CSL 13003 C	CSL 13003 E	CSL 13003 F

TO-92 Plastic Package

The TO-92 Package, Tape and Ammo Pack Drawings are correct as on the date of issue/revision of this Data Sheet.


The currently valid dimensions and information, may please be confirmed from the TO-92 Drawing in the Packages and Packing Section of the Product Catalogue.

Packing Details

PACKAGE	STANDARD PACK		INNER CARTON BOX		OUTER (CARTON BOX	
	Details	Net Weight/Qty	Size	Qty	Size Qty		Gr Wt
TO-92 Bulk	1K/polybag	200 gm/1K pcs	3" x 7.5" x 7.5"	5K	17" x 15" x 13.5"	80K	23 kgs
TO-92 T&A	2K/ammo box	645 gm/2K pcs	12.5" x 8" x 1.8"	2K	17" x 15" x 13.5"	32K	12.5 kgs

TO-92 Tape and Ammo Pack

All dimensions are in mm

		SPECIFICATION				
ITEM	SYMBOL	MIN.	NOM.	MAX.	TOL.	
BODY WIDTH	A1	4.0		4.8		
BODY HEIGHT	Α	4.8		5.2		
BODY THICKNESS	Т	3.9		4.2		
PITCH OF COMPONENT	Р		12.7		± 1.0	
*1FEED HOLE PITCH	Po		12.7		± 0.3	
*2 FEED HOLE CENTRE TO						
COMPONENT CENTRE	P2		6.35		± 0.4	
DISTANCE BETWEEN OUTER LEADS	F		5.08		+ 0.6 - 0.2	
*3 COMPONENT ALIGNMENT SIDE VIEW	∆h		0	1.0		
*4 COMPONENT ALIGNMENT FRONT VIEW	∆h1		0	1.3		
TAPE WIDTH	W		18		± 0.5	
HOLD-DOWN TAPE WIDTH	Wo		6		± 0.2	
HOLE POSITION	W1		9		+ 0.7	
					- 0.5	
HOLD-DOWN TAPE POSITION	W2		0.5		± 0.2	
LEAD WIRE CLINCH HEIGHT	Но		16		± 0.5	
COMPONENT HEIGHT	H1			23.25		
LENGTH OF SNIPPED LEADS	L			11.0		
FEED HOLE DIAMETER	Do		4		± 0.2	
*5 TOTAL TAPE THICKNESS	t			1.2		
LEAD - TO - LEAD DISTANCE	F1, F2		2.54		+ 0.4 - 0.1	
STAND OFF	H2	0.45		1.45	- 0.1	
CLINCH HEIGHT	Н3			3.0		
LEAD PARALLELISM	C1 - C2			0.22		
PULL - OUT FORCE	(p)	6N				

NOTES

- 1. Maximum alignment deviation between leads will not to be greater than 0.2mm.
- 2. Maximum non-cumulative variation between tape feed holes shall not exceed 1 mm in 20 pitches.
- 3. Holddown tape will not exceed beyond the edge(s) of carrier tape and there shall be no exposure of adhesive.
- 4. There will be no more than three (3) consecutive missing components in a tape.
- 5. A tape trailer, having at least three feed holes are provided after the last component in a tape.
- 6. Splices should not interfere with the sprocket feed holes.

REMARKS

- *1 Cumulative pitch error 1.0 mm/20 pitch
- *2 To be measured at bottom of clinch
- *3 At top of body
- *4 At top of body
- *5 t1 0.3 0.6 mm

DISCLAIMER NOTICE

Rectron Inc reserves the right to make changes without notice to any product specification herein, to make corrections, modifications, enhancements or other changes. Rectron Inc or anyone on its behalf assumes no responsibility or liability for any errors or inaccuracies. Data sheet specifications and its information contained are intended to provide a product description only. "Typical" parameters which may be included on RECTRON data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. Rectron Inc does not assume any liability arising out of the application or use of any product or circuit.

Rectron products are not designed, intended or authorized for use in medical, life-saving implant or other applications intended for life-sustaining or other related applications where a failure or malfunction of component or circuitry may directly or indirectly cause injury or threaten a life without expressed written approval of Rectron Inc. Customers using or selling Rectron components for use in such applications do so at their own risk and shall agree to fully indemnify Rectron Inc and its subsidiaries harmless against all claims, damages and expenditures.

