L-band Down Converter for Satellite Tuner

Description

The CXA3068N is a monolithic IC to down-convert the L-band (930 to 2150 MHz) signal for the satellite broadcasting receiver. It has a double-balanced mixer, local oscillator circuit and IF amplifier on chip.

Features

- Balance-type Colpitts oscillator circuit provides a stable and wide range oscillation.
Oscillation frequency: 2.63 GHz
- Small leak of the local oscillation signal due to the double-balanced mixer.
- Oscillation frequency drift is small, caused by the change of impedance at the pre-stage of RF input.
- Local oscillator output circuit for PLL.
- Single 5 V power supply operation.
- Low current consumption. Icc=53 mA (typ.)
- 16-pin SSOP package contributes to reduction in set size.

Applications

- Satellite broadcasting tuners for BS, CS, DSS and DVB. (Frequency conversion to the second IF)

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

- Supply voltage Vcc -0.3 to +5.5 V
- Storage temperature Tstg -55 to $+150{ }^{\circ} \mathrm{C}$
- Allowable power dissipation

Pd 625 mW
(When mounted on board)

Operating Conditions

$\begin{array}{lccc}\text { - Supply voltage } & \text { Vcc } & 4.75 \text { to } 5.3 & \text { V } \\ \text { - Ambient temperature } & \text { Topr } & -20 \text { to } 75 & { }^{\circ} \mathrm{C}\end{array}$

Structure

Bipolar silicon monolithic IC

Block Diagram and Pin Configuration

[^0]Pin Description and Equivalent Circuit

\begin{tabular}{|c|c|c|c|c|}
\hline $$
\begin{aligned}
& \hline \text { Pin } \\
& \text { No. }
\end{aligned}
$$ \& Symbol \& Typical pin voltage (V) \& Equivalent circuit \& Description

\hline 1 \& IF OUT \& 2.5 \& \& IF output.

\hline 2 \& vcc2 \& 5.0 \& \& IF block power supply.

\hline 3 \& GND2 \& 0 \& \& IF block GND.

\hline 4 \& GND2 \& 0 \& \& IF block GND.

\hline 5
6 \& RF IN1

RF IN2 \& 1.8

1.8 \& \& | RF input. |
| :--- |
| Normally, a decoupling capacitor is connected at Pin 5 to GND and Pin 6 is used for input. |

\hline 7 \& GND1 \& 0 \& \& RF block GND.

\hline 8 \& OSC OUT2 \& 3.5 \& \& Local oscillation output.

\hline 9 \& OSC OUT1 \& 3.5 \& \&

\hline
\end{tabular}

$\begin{aligned} & \text { Pin } \\ & \text { No } \end{aligned}$	Symbol	Typical pin voltage (V)	Equivalent circuit	Description
10	GND1	0		RF block GND.
11	OSC B2	2.4		Oscillator.
12	NC	-		
13	NC	-		
14	OSC B1	2.4		
15	GND1	0		RF block GND.
16	VCC1	5.0		RF block power supply.

Electrical Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}$, refer to the Electrical Characteristics Measurement Circuit.) Input frequency: 950 to 2150 MHz

No	Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
1	Current consumption	Icc	No signal	31.0	53.0	75.0	mA
2	Conversion gain *1	CG1	fin $=950 \mathrm{MHz}$, fiF $=480 \mathrm{MHz}$	16	19	23	dB
		CG2	fin $=1450 \mathrm{MHz}$, fif $=480 \mathrm{MHz}$	18	21	25	dB
		CG3	fin $=2150 \mathrm{MHz}$, fif $=480 \mathrm{MHz}$	19	22	26	dB
3	Noise figure *1, 2	NF1	$\mathrm{fin}=950 \mathrm{MHz}$, fiF $=480 \mathrm{MHz}$		16	19	dB
		NF2	fin $=1450 \mathrm{MHz}$, fif $=480 \mathrm{MHz}$		14	16	dB
		NF3	fin $=2150 \mathrm{MHz}$, fiF $=480 \mathrm{MHz}$		14	16	dB
4	Local oscillation output	Posc1	fosc $=1430$ to 1830 MHz	-10	-6		dBm
		Posc2	fosc $=1830$ to 2230 MHz	-10	-6		dBm
		Posc3	fosc $=2230$ to 2630 MHz	-11	-7		dBm
5	IF maximum output	Po (sat)	$\mathrm{fiF}=480 \mathrm{MHz}$	5.5	8.5	11.0	dBm
6	RF pin local oscillation leakage	RFLK1	fosc $=1430$ to 1830 MHz			-20	dBm
		RFLK2	fosc $=1830$ to 2230 MHz			-20	dBm
		RFLK3	fosc $=2230$ to 2630 MHz			-20	dBm
7	IF pin local oscillation leakage	IFLK1	fosc $=1430$ to 1830 MHz			-20	dBm
		IFLK2	fosc $=1830$ to 2230 MHz			-32	dBm
		IFLK3	fosc $=2230$ to 2630 MHz			-32	dBm
8	Third-order intermodulation distortion *1, 3	IM3	$\begin{aligned} & \text { Pin }=-25 \mathrm{dBm} \\ & \text { fin }=950 \mathrm{MHz}+960 \mathrm{MHz} \\ & \text { fout }=470 \mathrm{MHz}+480 \mathrm{MHz} \\ & \mathrm{~S} / \mathrm{I} \text { of } 460 \mathrm{MHz} \text { and } 480 \mathrm{MHz} \end{aligned}$		45.0		dB
9	Local oscillation phase noise	CN1	fosc $=1430 \mathrm{MHz}$, offset 10 kHz		74		$\mathrm{dBc} / \mathrm{Hz}$
		CN2	fosc= 1430 MHz , offset 100 kHz		95		$\mathrm{dBc} / \mathrm{Hz}$
10	IF output VSWR	IFVSWR	$\mathrm{f}=480 \mathrm{MHz}$		1.2		
11	RF input impedance	r π	$\mathrm{f}=950 \mathrm{MHz}$		140		Ω
		$\mathrm{C} \pi$			5		pF

*1) Measured value for untuned inputs.
*2) Noise figure is uncorrected for image.
*3) Measure S / I of the desired intermediate frequency (480 MHz) and distortion component (460 MHz) with a spectrum analyzer, assuming input level of the reception frequency to be -25 dBm (when IC input pin is converted for 50Ω).

Description of Operation (Refer to the Electrical Characteristics Measurement Circuit.)

1) Oscillator circuit

The oscillator circuit is formed with two Colpitts oscillators, and oscillation is provided at the differential input via an LC resonance circuit including a varicap diode. This is oscillated only by attaching an LC resonance circuit externally because feedback capacitance, etc. are built in for oscillation.
2) Mixer circuit

This is a double-balance mixer having small leak of local oscillation signal. The RF signal is input to Pins 5 and 6. In normal use, the signal is input to one pin while the other pin is connected to GND via decoupling capacitor.
3) IF amplifier circuit

The mixer output signal is amplified by the IF amplifier and output to Pin 1. The IF output is emitterfollower output and output impedance is approximately $50 \Omega(480 \mathrm{MHz})$.
4) PLL oscillation signal output circuit

The output circuit is built in to drive the PLL for tuning. This is emitter-follower output and output impedance is approximately 50Ω.

Conversion gain vs. Reception frequency (untuned input)

Noise figure vs. Reception frequency (untuned input, in DSB)

Local oscillation output level vs. Local oscillation frequency

RF pin oscillation frequency leak vs. Local oscillation frequency

Input Impedance

Output Impedance (IF)

Output Impedance (local oscillation output)

Package Outline Unit: mm

NOTE: Dimension "*" does not include mold protrusion.

PACKAGE STRUCTURE

SONY CODE	SSOP-16P-L01
EIAJ CODE	SSOP016-P-0044
JEDEC CODE	-

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER / PALLADIUM
PEATING	
PACKAD MATERIAL	COPPER / 42 ALLOY

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

