CMOS 8-bit Single Chip Microcomputer

Description

CXP84332M/84340M is a CMOS 8 -bit single chip microcomputer integrating on a single chip an A/D converter, serial interface, timer/counter, time base timer, capture timer/counter, remote control reception circuit, PWM output, and 32 kHz timer/counter besides the basic configurations of 8 -bit CPU, ROM, RAM, and I/O port.
The CXP84332M/84340M also provides a sleep/stop
 function that enables lower power consumption.

Features

- Wide-range instruction system (213 instructions) to cover various types of data
- 16-bit arithmetic/multiplication and division/boolean bit operation instructions
- Minimum instruction cycle 200ns at 20 MHz operation
$122 \mu \mathrm{~s}$ at 32 kHz operation
- Incorporated ROM capacity

32K bytes (CXP84332M)
40K bytes (CXP84340M)

- Incorporated RAM capacity

1120 bytes

- Peripheral functions
- A/D converter

8 bits, 8 channels, successive approximation method (Conversion time of $16 \mu \mathrm{~s} / 20 \mathrm{MHz}$)

- Serial interface

8-bit, 8-stage FIFO incorporated
(Auto transfer for 1 to 8 bytes), 1 channel
8 -bit clock synchronization, 1 channel

- Timers

8-bit timer
8-bit timer/counter
19-bit time base timer
16-bit capture timer/counter
32kHz timer/counter
— Remote control reception circuit 8-bit pulse measuring counter, 6-stage FIFO

- PWM output
- Interruption
- Standby mode

14 bits, 1 channel
15 factors, 15 vectors, multi-interruption possible
SLEEP/STOP

- Package

80-pin plastic QFP

- Piggyback/evaluation chip

CXP84300 80-pin ceramic QFP

Structure

Silicon gate CMOS IC

[^0]Block Diagram

Pin Assignment (Top View)

Note) NC (Pin 73) must be connected to Vod.

Pin Description

Pin code	I/O		Functions
$\begin{gathered} \text { PAO/ANO } \\ \text { to } \\ \text { PA7/AN7 } \end{gathered}$	I/O/Analog input	(Port A) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of the pull-up resistance can be set through the software in a unit of 4 bits. (8 pins)	Analog inputs to A/D converter. (8 pins)
PBO/CINT	I/O/Input	(Port B) Lower 7-bit I/O port in which I/O can be set in a unit of single bits. Also, an uppermost bit (PB7) exclusively for output. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	External capture input to 16-bit timer/counter.
PB1/CS0	I/O/Input		Chip select input for serial interface (CHO).
PB2/SCK0	I/O///O		Serial clock I/O (CHO).
PB3/SIO	I/O/Input		Serial data input (CHO).
PB4/SO0	I/O/Output		Serial data output (CHO).
PB5/SCK1	I/O///O		Serial clock I/O (CH1).
PB6/S11	I/O/Input		Serial data input (CH1).
PB7/SO1	Output/Output		Serial data output (CH1).
PC0 to PC7	I/O	(Port C) 8-bit I/O port. I/O can be set in a unit of single bits. Capable of driving 12 mA sync current. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	
PD0 to PD7	I/O	(Port D) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits. (8 pins)	
PE0/EC0	Input/Input	(Port E) 6-bit port. Lower 4 bits are for inputs; upper 2 bits are for outputs. (6 pins)	External event inputs for timer/counter. (2 pins)
PE1/EC1	Input/Input		
PE2/RMC	Input/Input		Remote control reception circuit input.
PE3/VMI	Input/Input		Non-maskable interruption request input.
PE4/PWM	Output/Output		14-bit PWM output.
PE5/TO/ADJ	Output/Output/ Output		Rectangular wave output for 16-bit timer/counter and output for 32 kHz oscillation frequency demultiplication.
PF0 to PF7	I/O	(Port F) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	

Pin code	I/O	Functions
PG0 to PG7	I/O	(Port G) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits. (8 pins)
PH0 to PH7	I/O	(Port H) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits. (8 pins)
PIO/INTO to PI3/INT3	I/O/Input	(Port I) External interruption 8-bit I/O ports. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the softer (4 pins)
PI4 to PI7	I/O	(8 pins)
EXTAL	Input	Crystal connectors for system clock oscillation. When the clock is supplied externally, input to EXTAL; opposite phase clock should be input to XTAL.
XTAL	Output	
TEX	Input	Crystal connectors for 32 kHz timer/counter clock oscillaton circuit. For usage as event counter, input to TEX, and open TX.
TX	Output	
$\overline{\mathrm{RST}}$	Input	Low-level active, system reset.
NC		NC. Under normal operating conditions, connect to Vod.
AVREF	Input	Reference voltage input for A/D converter.
AVss		A/D converter GND.
VdD		Vcc supply.
Vss		GND

I/O Circuit Format for Pins

Pin	Circuit format		When reset
PAO/ANO to PA7/AN7 8 pins	Port A		Hi-Z
PBO/CINT PB1/CS0 PB3/SI0 PB6/SI1 4 pins			Hi-Z
PB2/ $\overline{\text { CCK }}$ PB5/SCK1 2 pins	Port Data bu		Hi-Z

Pin	Circuit format	When reset
PE4/PWM $1 \text { pin }$	Port E	High level
PE5/TO/ADJ 1 pin	Port E	High level
PD0 to PD7 PF0 to PF7 PG0 to PG7 PH0 to PH7 PI4 to PI7		Hi-Z

Pin	Circuit format	When reset
PIO/INTO to PI3/INT3 4 pins	Port I	Hi-Z
EXTAL XTAL 2 pins		Oscillation
TEX TX 2 pins		Oscillation
$\overline{\mathrm{RST}}$ 1 pin		Low level

Absolute Maximum Ratings
(Vss = OV reference)

Item	Symbol	Ratings	Unit	
Supply voltage	VDD	-0.3 to +7.0	V	
	AVss	-0.3 to +0.3	V	
Input voltage	VIn	-0.3 to $+7.0^{* 1}$	V	
Output voltage	Vout	-0.3 to $+7.0^{* 1}$	V	
High level output current	IOH	-5	mA	Output per pin
High level total output current	\sum loh	-50	mA	Total for all output pins
Low level output current	loL	15	mA	Value per pin, excluding large current outputs
	loLc	20	mA	Value per pin*2 for large current outputs
Low level total output current	$\sum \mathrm{loL}$	100	mA	Total for all output pins
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	PD	600	mW	

*1) Vin and Vout must not exceed Vdd +0.3 V .
*2) The large current drive transistor is the N -ch transistor of Port C (PC).
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should be conducted under the recommended operating conditions. Exceeding these conditions may adversely affect the reliability of the LSI.

Recommended Operating Conditions
(Vss = 0V reference)

Item	Symbol	Min.	Max.	Unit	Remarks
Supply voltage	Vdo	4.5	5.5	V	Guaranteed operation range for high speed mode*1
		3.5	5.5		Guaranteed operation range for low speed mode*1
		2.7	5.5		Guaranteed operation range with TEX clock
		2.5	5.5		Guaranteed data hold range during STOP
High level input voltage	VIH	0.7 VdD	VdD	V	*2
	Vihs	0.8Vdd	Vdd	V	Hysteresis input*3
	VIHEX	Vdo - 0.4	VdD +0.3	V	EXTAL*4
Low level input voltage	VIL	0	0.3 VdD	V	*2
	VILS	0	0.2 VdD	V	Hysteresis input*3
	VILex	-0.3	0.4	V	EXTAL*4
Operating temperature	Topr	-20	+75	${ }^{\circ} \mathrm{C}$	

*1) High speed mode is $1 / 2$ frequency dividing clock selection; low-speed mode is $1 / 16$ frequency dividing clock selection.
*2) Value for each pin of normal input ports (PA, PB3, PB4, PB6, PC, PD, PF to PH, PI4 to PI7).
*3) Value of the following pins: $\overline{\mathrm{RST}}, \mathrm{CINT}, \overline{\mathrm{CSO}}, \overline{\mathrm{SCKO}}, \overline{\mathrm{SCK} 1}, \overline{\mathrm{ECO}}, \overline{\mathrm{EC} 1}, \mathrm{RMC}, \overline{\mathrm{NMI}, ~ I N T 0, ~ I N T 1, ~ I N T 2, ~}$ INT3.
*4) Specifies only during external clock input.

Electrical Characteristics

DC Characteristics
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output current	Vон	PA to PD, PE4, PE5, PF to PI	$\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}$, $\mathrm{IOH}=-0.5 \mathrm{~mA}$	4.0			V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loH}=-1.2 \mathrm{~mA}$	3.5			V
Low level output current	Vol		$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{VDD}=4.5 \mathrm{~V}$, loL $=3.6 \mathrm{~mA}$			0.6	V
		PC	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=12.0 \mathrm{~mA}$			1.5	V
Input current	ІІне	EXTAL	$\mathrm{V} \mathrm{VD}=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{IH}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
	ILLE		$\mathrm{VDD}=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
	Інт	TEX	V DD $=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=5.5 \mathrm{~V}$	0.1		10	$\mu \mathrm{A}$
	ILT		$\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V}, \\ & \mathrm{VIL}=0.4 \mathrm{~V} \end{aligned}$	-0.1		-10	$\mu \mathrm{A}$
	ILLR	RST*1		-1.5		-400	$\mu \mathrm{A}$
	IIL	PA to PD*2, PF to $\mathrm{Pl}^{* 2}$				-2.0	mA
			$\mathrm{V} D \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{~V}$ IL $=4.0 \mathrm{~V}$	-10			$\mu \mathrm{A}$
I/O leakage current	IIz	$\frac{\mathrm{PEO} \text { to }}{\mathrm{RST}^{*}} \mathrm{PE},$	$\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=0,5.5 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$
Power supply current*3	IdD1	Vdo	High-speed mode operation (1/2 frequency dividing clock) $\begin{array}{\|l\|} \hline \mathrm{VDD}=5.5 \mathrm{~V}, 2 \mathrm{MHz} \text { crystal oscillation } \\ \left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right) \end{array}$		32	52	mA
	IdD2		VDD $=3 \mathrm{~V}, 32 \mathrm{kHz}$ crystal oscillation $\left(\mathrm{C}_{1}=\mathrm{C}_{2}=47 \mathrm{pF}\right)$		38	100	$\mu \mathrm{A}$
			SLEEP mode				
	IDDS1		VDD $=5.5 \mathrm{~V}, 20 \mathrm{MHz}$ crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}$)		1.4	10	mA
	IdDS2		VDD $=3 \mathrm{~V}, 32 \mathrm{kHz}$ crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=47 \mathrm{pF}$)		9	30	$\mu \mathrm{A}$
			STOP mode				
	IdDS3		VDD $=5.5 \mathrm{~V}$, termination of 20 MHz and 32 kHz crystal oscillation			10	$\mu \mathrm{A}$
Input capacity	CIn	PA, PB0 to PB6, PC, PD, PE0 to PE3, PF to PI, EXTAL, XTAL, TEX, TX, RST	Clock 1MHz OV for all pins excluding measured pins		10	20	pF

*1) $\overline{\text { RST }}$ specifies the input current when pull-up resistance has been selected; leakage current when no resistance has been selected.
*2) PA to PD, and PF to PI pins specifie the input current when pull-up resistance has been selected; leakage current when no resistance has been selected. (Excludes output PB7)
*3) When all pins are open.

AC Characteristics
(1) Clock timing ($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Conditions	Min.	Typ.	Max.	Unit
System clock frequency	fc	XTAL EXTAL	Fig. 1, Fig. 2	1		20	MHz
System clock input pulse width	$\mathrm{txL},$ txh	EXTAL	Fig. 1, Fig. 2 External clock drive	23.0			ns
System clock input rise time, fall time	tcR, tcF	EXTAL	Fig. 1, Fig. 2 External clock drive			200	ns
Event count input clock pulse width	$\begin{aligned} & \text { tem, } \\ & \mathrm{t}_{\mathrm{EL}} \end{aligned}$	$\overline{\overline{\mathrm{ECO}}}$	Fig. 3	tsys $+50^{* 1}$			ns
Event count input clock rise time, fall time	ter, tef	$\overline{\overline{\mathrm{ECO}}}$	Fig. 3			20	ms
System clock frequency	fc	$\begin{aligned} & \text { TEX } \\ & \text { TX } \end{aligned}$	VDD $=2.7$ to 5.5 V Fig. 2 (32kHz clock applied condition)		32.768		kHz
Event count input clock input pulse width	$\begin{aligned} & \mathrm{t}_{\mathrm{TL}}, \\ & \mathrm{t}_{\mathrm{th}} \end{aligned}$	TEX	Fig. 3	10			$\mu \mathrm{S}$
Event count input clock rise time, fall time	$\begin{aligned} & \text { tTR, } \\ & \text { tTT } \end{aligned}$	TEX	Fig. 3			20	ms

*1) tsys indicates the three values below according to the upper two bits (CPU clock selected) of the control clock register (address: 00FEн).
tsys $(\mathrm{ns})=2000 / \mathrm{fc}$ (upper two bits $=$ "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits = " 11 ")

Fig. 1. Clock timing

Fig. 2. Clock applied conditions

Fig. 3. Event count clock timing

(2) Serial transfer (CHO)
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{D}=4.5$ to 5.5 V , Vss reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
$\begin{array}{\|l} \hline \overline{\text { CSO }} \downarrow \rightarrow \overline{\text { SCKO }} \\ \text { delay time } \end{array}$	tocsk	$\overline{\text { SCKO }}$	Chip select transfer mode (SCKO $=$ output mode)		tsys + 200	ns
$\overline{\mathrm{CSO}} \uparrow \rightarrow \overline{\text { SCKO }}$ float delay time	tocskf	$\overline{\text { SCKO }}$	Chip select transfer mode ($\overline{\mathrm{SCKO}}=$ output mode)		tsys +200	ns
$\overline{\mathrm{CSO}} \downarrow \rightarrow \mathrm{SOO}$ delay time	tocso	SOO	Chip select transfer mode		tsys + 200	ns
$\overline{\mathrm{CSO}} \uparrow \rightarrow \mathrm{SOO}$ float delay time	tocsof	SO0	Chip select transfer mode		tsys + 200	ns
CS0 High level width	twhcs	CSO	Chip select transfer mode	tsys + 200		ns
$\overline{\text { SCKO }}$ cycle time	tkcy	$\overline{\text { SCKO }}$	Input mode	2tsys +200		ns
			Output mode	16000/fc		ns
$\overline{\text { SCKO }}$ High, Low level width		$\overline{\text { SCKO }}$	Input mode	tsys +100		ns
			Output mode	8000/fc - 50		ns
SIO input set-up time (for SCKO \uparrow)	tsık	SIO	SCK0 input mode	100		ns
			$\overline{\text { SCK0 }}$ output mode	200		ns
SIO input hold time (for SCKO \uparrow)	tksı	SIO	SCKO input mode	tsys + 200		ns
			$\overline{\text { SCKO }}$ output mode	100		ns
$\overline{\text { SCKO }} \downarrow \rightarrow \mathrm{SOO}$delay time	tkso	SOO	SCKO input mode		tsys+200	ns
			$\overline{\text { SCKO }}$ output mode		100	ns

Note 1) tsys indicates the three values below according to the upper two bits (CPU clock selected) of the control clock register (address: OOFEн).
tsys (ns) = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits = " 11 ")
Note 2) The load condition for the $\overline{\text { SCKO }}$ output mode, SOO output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.

Fig. 4. Serial transfer CHO timing

Serial transfer (CH1)
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{D}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Condition	Min.	Max.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcy	$\overline{\text { SCK1 }}$	Input mode	1000		ns
			Output mode	16000/fc		ns
$\overline{\text { SCK1 }}$ High, Low level width	$\begin{aligned} & \text { tkH } \\ & \text { tKL } \end{aligned}$	$\overline{\text { SCK1 }}$	Input mode	400		ns
			Output mode	8000/fc - 50		ns
SI1 input set-up time (for $\overline{\text { SCK1 }} \uparrow$)	tsık	SI1	$\overline{\text { SCK1 }}$ input mode	100		ns
			$\overline{\text { SCK1 }}$ output mode	200		ns
SI1 input hold time (for $\overline{\mathrm{SCK}} \uparrow$)	tksı	SI1	$\overline{\text { SCK1 } 1}$ input mode	200		ns
			$\overline{\text { SCK1 }}$ output mode	100		ns
$\overline{\text { SCK1 }} \downarrow \rightarrow$ SO1 delay time	tkso	SO1	$\overline{\text { SCK1 }}$ input mode		200	ns
			$\overline{\text { SCK1 }}$ output mode		100	ns

Note) The load condition for the SCK1 output mode, SO1 output delay time is $50 \mathrm{pF}+1$ TTL.

Fig. 5. Serial transfer CH 1 timing

(3) A/D converter characteristics

($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{AV}$ ReF $=4.0$ to $\mathrm{VdD}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Condition	Min.	Typ.	Max.	Unit
Resolution						8	Bits
Linearity error			$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=A \mathrm{~V}_{\mathrm{REF}}=5.0 \mathrm{~V} \\ & \mathrm{Vss}=\mathrm{AV} \text { ss }=0 \mathrm{~V} \end{aligned}$			± 5	LSB
Zero transition voltage	VZT*1			-10	10	110	mV
Full-scale transition voltage	$V_{\text {FT }}{ }^{*}$			4870	4970	5070	mV
Conversion time	tconv			160/fadc*3			us
Sampling time	tsamp			12/fadc*3			$\mu \mathrm{s}$
Reference input voltage	Vref	AVref		VdD - 0.5		Vdd	V
Analog input voltage	Vian	AN0 to AN7		0		AVref	V
AVref current	Iref	AVref	Operation mode		0.6	1.0	mA
	Irefs		SLEEP mode STOP mode 32 kHz operation mode			10	$\mu \mathrm{A}$

Fig. 6. Definition of A/D converter terms

$\left.{ }^{*} 1\right)$ VZT : Value at which the digital transfer value changes from 00н to 01н and vice versa.
*2) VFT : Value at which the digital transfer value changes from FEн to FFh and vice versa.
*3) $f_{A D C}$ indicates the values below due to the contents of bit 6 (CKS) of the A/D control register (ADC: 00F9н) and bits 7 (PCK1) and 6 (PCK0) of the clock control register (CLC: 00FEн).

PCK1, 0	$0(\phi / 2$ selection $)$	$1(\phi$ selection $)$
$00\left(\phi=\mathrm{fex}^{2} / 2\right)$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 2$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc}$
$01(\phi=\mathrm{fEX} / 4)$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 4$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 2$
$11(\phi=\mathrm{fEX} / 16)$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 16$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 8$

(4) Interruption, reset input $\quad\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , $\mathrm{V} s \mathrm{~S}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
External interruption High, Low level width	$\begin{aligned} & \mathrm{t}_{\mathrm{H}} \\ & \mathrm{t}_{2 \mathrm{~L}} \end{aligned}$	INTO INT1 INT2 INT3 $\overline{\mathrm{NMI}}$		1		$\mu \mathrm{S}$
Reset input Low level width	trsL	$\overline{\mathrm{RST}}$		32/fc		$\mu \mathrm{s}$

Fig 7. Interruption input timing

Fig. 8. $\overline{\mathrm{RST}}$ input timing

Appendix

Fig. 9. Recommended oscillation circuit
(i) Main clock

(ii) Main clock

(iii) Sub clock

Products List

Manufacturer	Model	fc (MHz)	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$	Rd (Ω)	Circuit example
MURATA MFG CO., LTD.	CSA16.00MXZ072	16.00	0	0	0	(i)
	CSA20.00MXZ046	20.00				
RIVER ELETEC CO., LTD.	HC-49/U03	16.00	8	8	0	(ii)
		20.00	6	6		
KINSEKI LTD.	P3	32.768 kHz	50	22	1M	(iii)

Mask option table

Item	Content	
Reset pin pull-up resistance	Non-existent	Existent

Example of Representative Characteristics

80PIN QFP (PLASTIC)

DETAIL A

SONY CODE	QFP-80P-L01
EIAJ CODE	QFP080-P-1420
JEDEC CODE	-

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	$42 / C O P P E R ~ A L L O Y ~$
PACKAGE MASS	1.6 g

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

