

CY62138V MoBL™

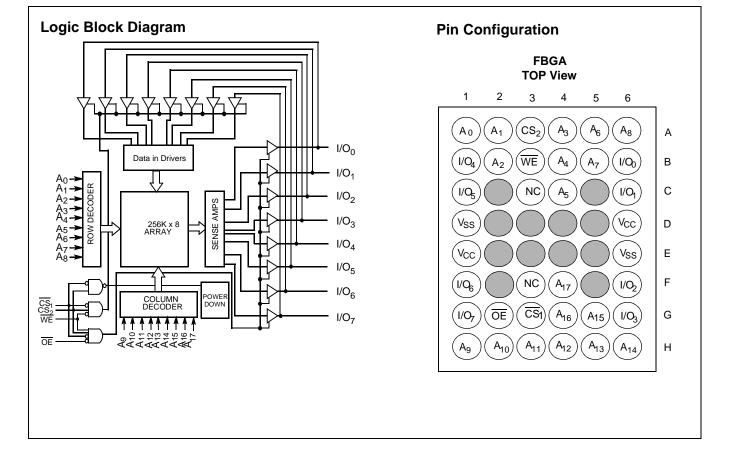
256K x 8 Static RAM

Features

- Low voltage range:
 - -2.7-3.6V
- Ultra-low active power
- · Low standby power
- Easy memory expansion with \overline{CS}_1/CS_2 and \overline{OE} features
- TTL-compatible inputs and outputs
- · Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description

The CY62138V is a high-performance CMOS static RAM organized as 256K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life[™] (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that reduces power


consumption by 99% when addresses are not toggling. The device can be put into standby mode when deselected (\overline{CS}_1 HIGH or CS_2 LOW).

Writing to the device is accomplished by taking Chip Enable One (\overline{CS}_1) and Write Enable (\overline{WE}) inputs LOW and Chip Enable Two (\overline{CS}_2) HIGH. Data on the eight I/O pins (I/O_0 through I/O₇) is then written into the location specified on the address pins (A_0 through A_{17}).

Reading from the device is accomplished by taking Chip Enable One ($\overline{CS_1}$) and Output Enable (\overline{OE}) LOW while forcing Write Enable (WE) and Chip Enable Two (CS_2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CS}_1 HIGH or CS_2 LOW), the outputs are disabled (\overline{OE} HIGH), or during a write operation (\overline{CS}_1 LOW, CS_2 HIGH, and WE LOW).

The CY62138V is available in a 36-ball FBGA.

CY62138V MoBL™

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	–65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage to Ground Potential	–0.5V to +4.6V
DC Voltage Applied to Outputs in High-Z State ^[1]	–0.5V to V _{CC} + 0.5V

DC Input Voltage ^[1]	–0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-up Current	> 200 mA

Operating Range

Device	Range	Ambient Temperature	v _{cc}
CY62138V	Industrial	–40°C to +85°C	2.7V to 3.6V

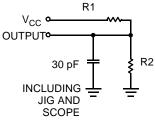
Product Portfolio

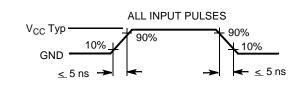
						Power Dis	sipation (In	dustrial)
	V _{CC} Range				Operat	ing (I _{cc})	St	andby (I _{SB2})
Product	V _{CC(min)}	V_{CC(typ)} ^[2]	V _{CC(max)}	Speed	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum
CY62138V	2.7V	3.0V	3.6V	70 ns	7 mA	15 mA	1 μΑ	15 μA

Electrical Characteristics Over the Operating Range

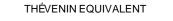
					CY62138\	1	
Parameter	Description	Test Condi	Min.	Typ. ^[2]	Max.	Unit	
V _{OH}	Output HIGH Voltage	I _{OH} = -1.0 mA	$V_{CC} = 2.7V$	2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$			0.4	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 3.6V$	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 2.7 V$	-0.5		0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-1	<u>+</u> 1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_{CC}$, Out Disabled	put	–1	+1	+1	μA
I _{CC}	V _{CC} Operating Supply Current	$ \begin{array}{c c} I_{OUT} = 0 \text{ mA}, & V_{CC} = 3.6V \\ f = f_{MAX} = 1/t_{RC}, \\ CMOS \text{ Levels} \end{array} $			7	15	mA
		$I_{OUT} = 0 \text{ mA},$ f = 1 MHz, CMOS Levels			1	2	mA
I _{SB1}	Automatic CE Power-down Current— CMOS Inputs	$\label{eq:constraint} \begin{array}{ c c } \hline CE \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \text{ or} \\ V_{IN} \leq 0.3V, \ f = f_{MAX} \end{array}$				100	μΑ
I _{SB2}	Automatic CE Power-down Current— CMOS Inputs	$\label{eq:constraint} \begin{array}{l} \overline{CE} \geq V_{CC} - 0.3V \\ V_{IN} \geq V_{CC} - 0.3V \\ \text{or } V_{IN} \leq 0.3V, \ \text{f} = 0 \end{array}$	V _{CC} = LL 3.6V		1	15	μΑ

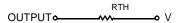
Capacitance^[3]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

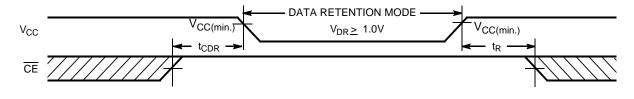

Notes:

1. $V_{IL}(min) = -2.0V$ for pulse durations less than 20 ns. 2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC}$ Typ, $T_A = 25^{\circ}C$. 3. Tested initially and after any design or process changes that may affect these parameters.




AC Test Loads and Waveforms

Equivalent to:



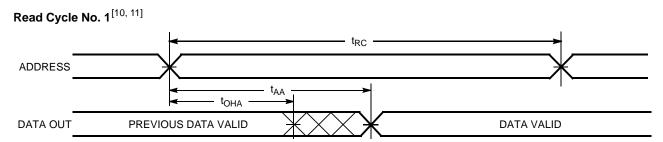
Parameters	3.0V	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ^[4]		Min.	Typ. ^[2]	Max.	Unit
V _{DR}	V _{CC} for Data Retention			1.0		3.6	V
I _{CCDR}	Data Retention Current	$\label{eq:V_CC} \begin{split} & V_{CC} = 1.0V \\ & CE \geq V_{CC} - 0.3V, \\ & V_{IN} \geq V_{CC} - 0.3V \text{ or} \\ & V_{IN} \leq 0.3V \\ & \text{No input may exceed} \\ & V_{CC} + 0.3V \end{split}$	LL		0.1	5	μA
t _{CDR} ^[3]	Chip Deselect to Data Retention Time			0			ns
t _R	Operation Recovery Time			100			μs

Data Retention Waveform^[5]

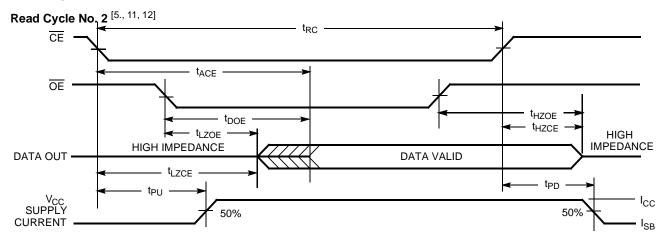
Notes:


- 4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified $\frac{I_{OL}}{I_{OH}}$ and 30-pF load capacitance. 5. CE is the combination of both CS₁ and CS₂.

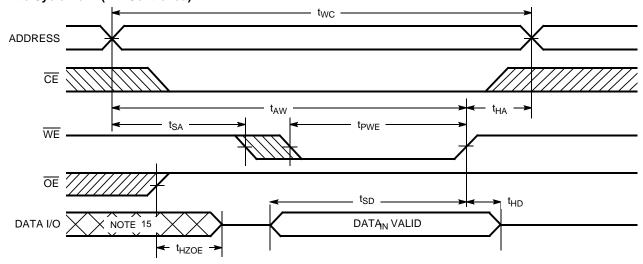
Switching Characteristics Over the Operating Range^[4]

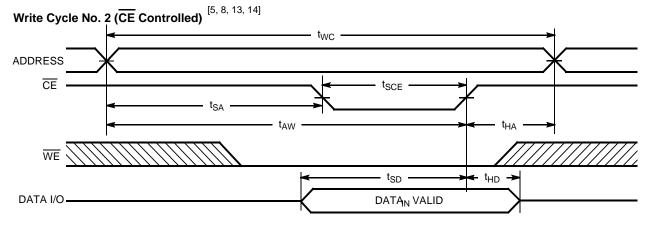
		70			
Parameter	Description	Min.	Max.	Unit	
Read Cycle			I		
t _{RC}	Read Cycle Time	70		ns	
t _{AA}	Address to Data Valid		70	ns	
t _{OHA}	Data Hold from Address Change	10		ns	
t _{ACE}	CE LOW to Data Valid		70	ns	
t _{DOE}	OE LOW to Data Valid		35	ns	
t _{LZOE}	OE LOW to Low-Z ^[6]	5		ns	
t _{HZOE}	OE HIGH to High-Z ^[6, 7]		25	ns	
t _{LZCE}	CE LOW to Low-Z ^[6]	10		ns	
t _{HZCE}	CE HIGH to High-Z ^[6, 7]		25	ns	
t _{PU}	CE LOW to Power-up	0		ns	
t _{PD}	CE HIGH to Power-down		70	ns	
Write Cycle ^[8, 9]			•		
t _{WC}	Write Cycle Time	70		ns	
t _{SCE}	CE LOW to Write End	60		ns	
t _{AW}	Address Set-up to Write End	60		ns	
t _{HA}	Address Hold from Write End	0		ns	
t _{SA}	Address Set-up to Write Start	0		ns	
t _{PWE}	WE Pulse Width	50		ns	
t _{SD}	Data Set-up to Write End 30			ns	
t _{HD}	Data Hold from Write End 0				
t _{HZWE}	WE LOW to High-Z ^[6, 7]		25	ns	
t _{LZWE}	WE HIGH to Low-Z ^[6]	10		ns	

Switching Waveforms



Notes:

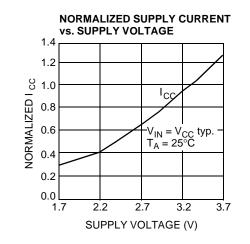

At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of <u>AC</u> Test Loads. Transition is measured ± 500 mV from steady-state voltage.
The internal write time of the memory is defined by the overlap of <u>CE</u> LOW and <u>WE</u> LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input <u>set-up</u> and hold <u>timing</u> should be referenced to the rising edge of the signal that terminates the write.
The minimum write cycle time for <u>write</u> cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.
Device is continuously selected. OE, <u>CE</u> = V_{IL}.
WE is HIGH for read cycle.

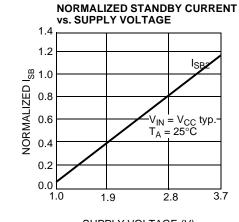


Switching Waveforms (continued)

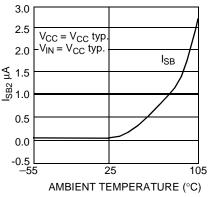
Write Cycle No. 1 (WE Controlled)^[5, 8, 13, 14]

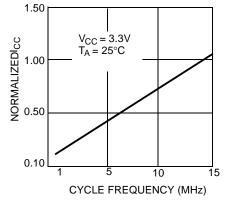
Notes:


- Address valid prior to or coincident with CE transition LOW.
 <u>Data</u> I/O is high impedance if OE = V_{IH}.
 If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 During this period, the I/Os are in output state and input signals should not be applied.



Switching Waveforms (continued)


Typical DC and AC Characteristics

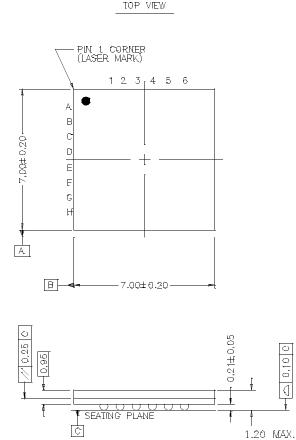


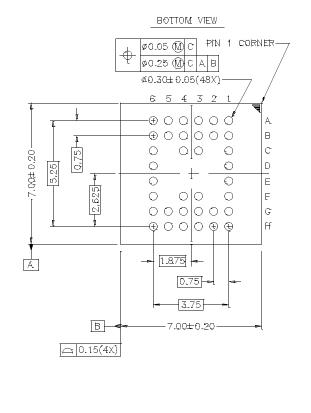
SUPPLY VOLTAGE (V)

STANDBY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED I CC vs.CYCLETIME

Truth Table


CS ₁	CS ₂	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
Х	L	Х	Х	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	Data Out	Read	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High-Z	Deselect, Output Disabled	Active (I _{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62138VLL-70BAI	BA36A	36-ball (7.0 mm × 7.0 mm × 1.2 mm) Fine Pitch BGA	Industrial

Package Diagram

36-ball Thin BGA BA36A

51-85099-B

More Battery Life is a trademark, and MoBL is a registered trademark, of Cypress Semiconductor. All products and company names mentioned in this document may be the trademarks of their respective holders.

 \odot

ò

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document Title: CY62138V MoBL™ 256K x 8 Static RAM Document Number: 38-05088

Document	Document Number: 50-05000							
REV.	j-			Description of Change				
**	107348	06/12/01	SZV	Change from Spec #: 38-00729 to 38-05088				
*A	114936	05/28/02	CBD	Replaced wrong package diagram with correct diagram (36-ball FBGA [see p. 7])				