

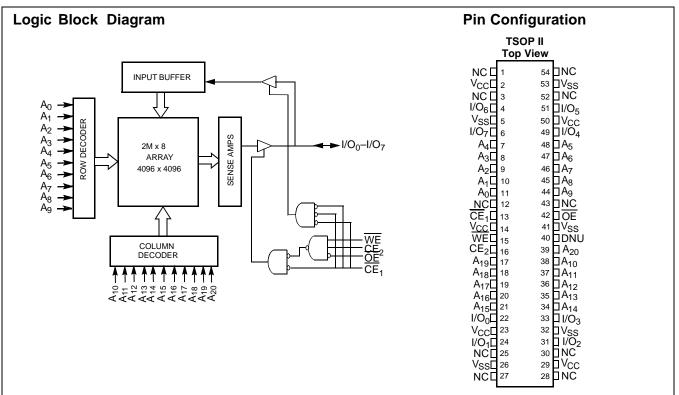
CY7C1069AV33

2M x 8 Static RAM

Features

- High speed
 - —t_{AA} = 8, 10, 12 ns
- Low active power
 - -1080 mW (max.)
- Operating voltages of 3.3 ± 0.3V
- 2.0V data retention
- · Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with CE₁ and CE₂ features

Functional Description


The CY7C1069AV33 is a high-performance CMOS Static RAM organized as 2,097,152 words by 8 bits. Writing to the

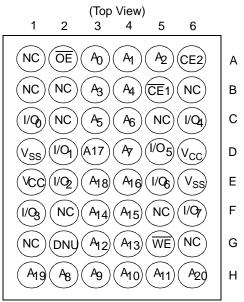
device is accomplished by enabling the chip (by taking \overline{CE}_1 LOW and CE_2 HIGH) and Write Enable (WE) inputs LOW.

<u>Reading</u> from the device is accomplished by enabling the chip $\overline{(CE_1 LOW}$ and CE_2 HIGH) as well as forcing the Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. See the truth table at the back of this data sheet for a complete description of Read and Write modes.

The input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (\overline{CE}_1 HIGH or CE₂ LOW), the outputs are disabled (\overline{OE} HIGH), or during a Write operation (\overline{CE}_1 LOW, CE₂ HIGH, and WE LOW).

The CY7C1069AV33 is available in a 54-pin TSOP II package with center power and ground (revolutionary) pinout, and a 48-ball fine-pitch ball grid array (FBGA) package.

Selection Guide


		8	-10	-12	Unit
Maximum Access Time		8	10	12	ns
Maximum Operating Current	Commercial	300	275	260	mA
	Industrial	300	275	260	
Maximum CMOS Standby Current	Commercial/Industrial	50	50	50	mA

3901 North First Street • San Jose, CA 95134 • 408-943-2600 Revised February 10, 2003

Pin Configurations

48-ball FBGA

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......-55°C to +125°C

Supply Voltage on V_{CC} to Relative $\text{GND}^{[1]} \dots -0.5 \text{V}$ to +4.6V

DC Voltage Applied to Outputs

in High-Z State ^[1]	0.5V to V_{CC} + 0.5V
DC Electrical Character	istics Over the Operating Range

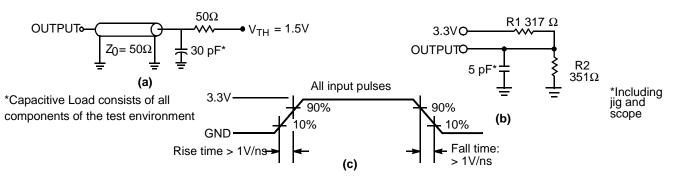
DC Input Voltage ^[1] –0.5V to V _{CC} + 0.5
--

Current into Outputs (LOW)...... 20 mA **Operating Range**

Ambient Range Temperature V_{CC} Commercial 0°C to +70°C $3.3V\pm0.3V$ -40°C to +85°C Industrial

				-8		-10		-12		
Parameter	Description	Test Condit	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	2.4		2.4		2.4		V	
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA			0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	2.0	V _{CC} + 0.3	V	
V _{IL}	Input LOW Voltage ^[1]			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I _{IX}	Input Load Current	$GND \leq V_I \leq V_{CC}$		-1	+1	-1	+1	-1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_{OUT} \leq V_{CC}$, Output Disabled		-1	+1	-1	+1	-1	+1	μΑ
I _{CC}	V _{CC} Operating	$V_{CC} = Max., f = f_{MAX}$	Commercial		300		275		260	mA
	Supply Current	= 1/t _{RC} Industrial			300		275		260	mA
I _{SB1}	Automatic CE Power-down Current —TTL Inputs	$\begin{array}{l} CE_2 \leq V_{IL}, \\ Max. V_{CC}, \ \overline{SCE} \geq V_{IH} \\ V_{IN} \geq V_{IH} \ or \\ V_{IN} \leq V_{IL}, \ f = f_{MAX} \end{array}$		70		70		70	mA	
I _{SB2}	Automatic CE Power-down Current —CMOS Inputs	$\begin{array}{l} CE_2 \leq 0.3V\\ \underline{Ma}x. \ V_{CC},\\ CE \geq V_{CC} - 0.3V,\\ V_{IN} \geq V_{CC} - 0.3V,\\ \text{or} \ V_{IN} \leq 0.3V, \ \text{f} = 0 \end{array}$	Commercial/ Industrial		50		50		50	mA

Capacitance^[2]


Parameter	Package	Description	Test Conditions	Max.	Unit
C _{IN}	Z54	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{CC} = 3.3 \text{V}$	6	pF
	BA48			8	pF
C _{OUT}	Z54	I/O Capacitance		8	pF
	BA48			10	pF

Notes:

V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms^[3]

AC Switching Characteristics Over the Operating Range ^[4]

		-	-8	-10		-12		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle				•		•		•
t _{power}	V _{CC} (typical) to the First Access ^[5]	1		1		1		ms
t _{RC}	Read Cycle Time	8		10		12		ns
t _{AA}	Address to Data Valid		10		10		12	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACE}	CE ₁ LOW/CE ₂ HIGH to Data Valid		8		10		12	ns
t _{DOE}	OE LOW to Data Valid		5		5		6	ns
t _{LZOE}	OE LOW to Low-Z ^[6]	1		1		1		ns
t _{HZOE}	OE HIGH to High-Z ^[6]		5		5		6	ns
t _{LZCE}	CE ₁ LOW/CE ₂ HIGH to Low-Z ^[6]	3		3		3		ns
t _{HZCE}	CE ₁ HIGH/CE ₂ LOW to High-Z ^[6]		5		5		6	ns
t _{PU}	CE ₁ LOW/CE ₂ HIGH to Power-up ^[7]	0		0		0		ns
t _{PD}	CE ₁ HIGH/CE ₂ LOW to Power-down ^[7]		8		10		12	ns
Write Cycle ^[8, 9]				•		•		•
t _{WC}	Write Cycle Time	8		10		12		ns
t _{SCE}	CE ₁ LOW/CE ₂ HIGH to Write End	6		7		8		ns
t _{AW}	Address Set-up to Write End	6		7		8		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	6		7		8		ns
t _{SD}	Data Set-up to Write End	5		5.5		6		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{LZWE}	WE HIGH to Low-Z ^[6]	3		3		3		ns
t _{HZWE}	WE LOW to High-Z ^[6]		5		5		6	ns

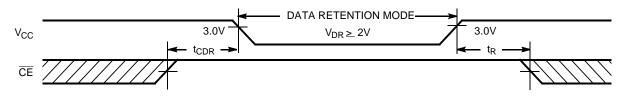
Notes:

Valid SRAM operation does not occur until the power supplies have reached the minimum operating V_{DD} (3.0V). As soon as 1ms (T_{power}) after reaching the 3.

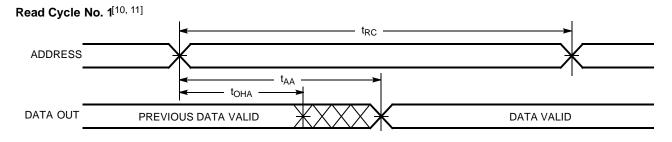
minimum operating V_{DD} , normal SRAM operation can begin including reduction in V_{DD} to the data retention (V_{CCDR} , 2.0V) voltage. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and transmission line loads. Test conditions for the Read cycle use output loading shown in part a) of the AC test loads, unless specified otherwise. 4. 5.

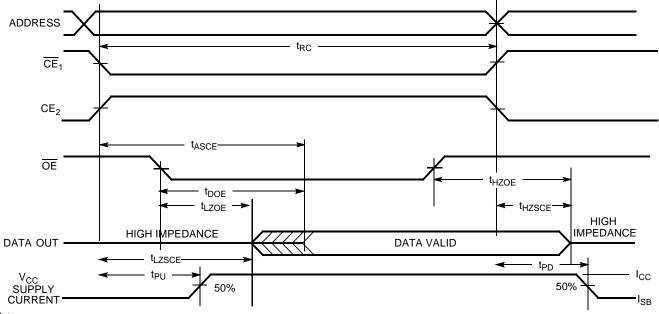
This part has a voltage regulator which steps down the voltage from 3V to 2V internally. tpower time has to be provided initially before a Read/Write operation is started.

6. t_{HZOE}, t_{HZXE}, t_{HZXE} and t_{LZOE}, t_{LZCE}, and t_{LZWE} are specified with a load capacitance of 5 pF as in (b) of AC Test Loads. Transition is measured ±200 mV from steady-state voltage.


7

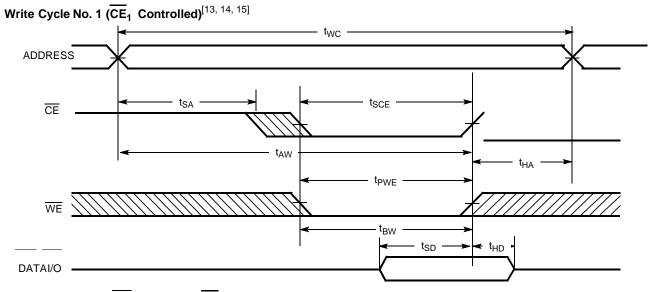
These parameters are guaranteed by design and are not tested. The internal Write time of the memory is defined by the overlap of $\overline{CE}_1 LOW / CE_2 HIGH$, and $\overline{WE} LOW$. \overline{CE}_1 and \overline{WE} must be LOW along with CE_2 HIGH to initiate 8. a Write, and the transition of any of these signals can terminate the Write. The input data set-up and hold timing should be referenced to the leading edge of The minimum Write cycle time for Write Cycle No. 3 (WE controlled, \overline{OE} LOW) is the sum of t_{HZWE} and t_{SD}.


9.

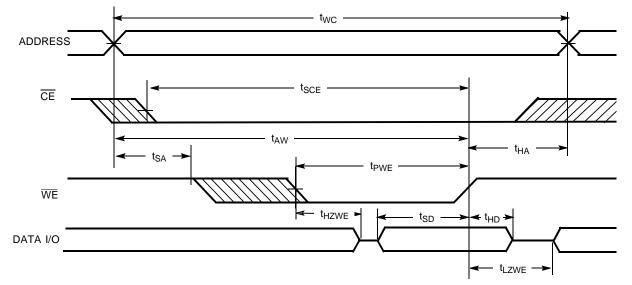

Data Retention Waveform

Switching Waveforms

Read Cycle No. 2(OE Controlled) [11, 12]



Notes:


10. Device is continuously selected. $\overline{CE}_1 = V_{|L}$, $CE_2 = V_{|H}$. 11. \overline{WE} is HIGH for Read cycle.

Switching Waveforms (continued)

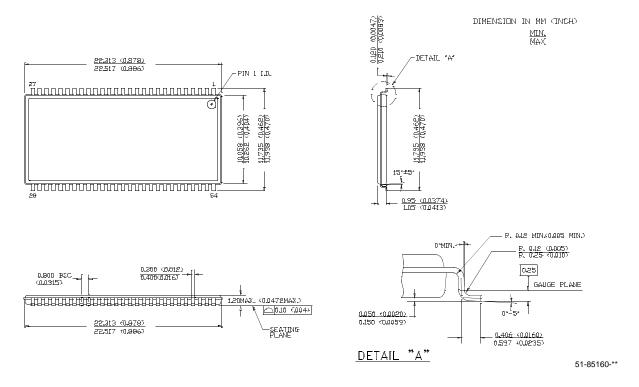
Write Cycle No.2 (WE Controlled, OE LOW) [13, 14, 15]

Truth Table

CE ₁	CE ₂	OE	WE	1/0 ₀ -1/0 ₇	Mode	Power
Н	Х	Х	Х	High-Z	Power-down	Standby (I _{SB})
Х	L	Х	Х	High-Z	Power-down	Standby (I _{SB})
L	Н	L	н	Data Out	Read All Bits	Active (I _{CC})
L	Н	Х	L	Data In	Write All Bits	Active (I _{CC})
L	Н	Н	Н	High-Z	Selected, Outputs Disabled	Active (I _{CC})

Notes:

Address valid prior to or coincident with CE₁ transition LOW and CE₂ transition HIGH.
Data I/O is high-impedance if OE = V_{IH}.
If CE₁ goes HIGH / CE₂ LOW simultaneously with WE going HIGH, the output remains in a high-impedance state.
CE above is defined as a combination of CE₁ and CE₂. It is active low.

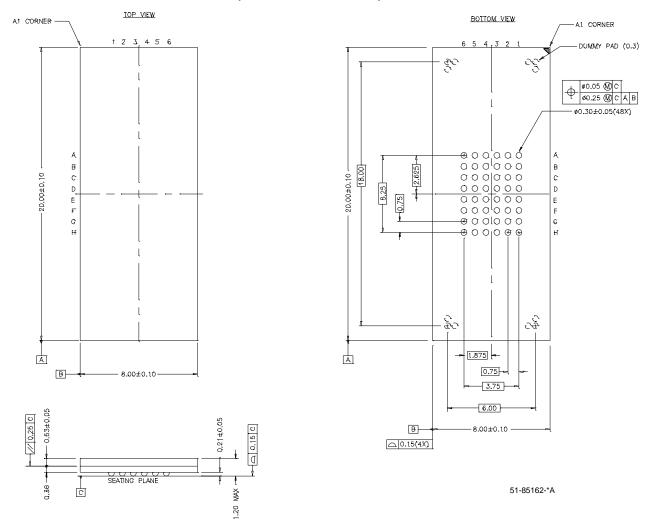


Ordering Information

Speed (ns)	Ordering Code ^[16]	Package Name	Package Type	Operating Range
8	CY7C1069AV33-8ZC	Z54	54-pin TSOP II	Commercial
	CY7C1069AV33-8ZI			Industrial
	CY7C1069AV33-8BAC	BA48	48-ball Mini BGA	Commercial
	CY7C1069AV33-8BAI			Industrial
10	CY7C1069AV33-10ZC	Z54	54-pin TSOP II	Commercial
	CY7C1069AV33-10ZI			Industrial
	CY7C1069AV33-10BAC	BA48	48-ball Mini BGA	Commercial
	CY7C1069AV33-10BAI			Industrial
12	CY7C1069AV33-12ZC	Z54	54-pin TSOP II	Commercial
	CY7C1069AV33-12ZI			Industrial
	CY7C1069AV33-12BAC	BA48	48-ball Mini BGA	Commercial
	CY7C1069AV33-12BAI			Industrial

Package Diagrams

54-lead Thin Small Outline Package, Type II Z54-II



Note:

16. Contact a Cypress Representative for availability of the 48-ball Mini BGA (BA48) package.

Package Diagrams (continued)

48-ball (8 mm x 20 mm x 1.2 mm) FBGA BA48G

All product and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Document History Page

	Title: CY7C1 Number: 38		A X 8 Static	RAM
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	113724	03/27/02	NSL	New Data Sheet
*A	117060	07/31/02	DFP	Removed 15-ns bin
*B	117990	08/30/02	DFP	Added 8-ns bin Changing I _{CC} for 8, 10, 12 bins t_{power} changed from 1 μ s to 1 ms Load Cap Comment changed (for Tx line load) t_{SD} changed to 5.5 ns for the 10-ns bin Changed some 8-ns bin #'s (t_{HZ} , t_{DOE} , t_{DBE}) Removed hz < Iz comments
*C	120385	11/13/02	DFP	Final Data Sheet Added note 4 to "AC Test Loads and Waveforms" and note 7 to t _{pu} and t _{pd} Updated Input/Output Caps (for 48BGA only) to 8 pf/10 pf and for the 54-pin TSOP to 6/8 pf
*D	124441	2/25/03	MEG	Changed ISB1 from 100 mA to 70 mA Shaded the 48fBGA product offering information