Low Voltage, Dual DPDT and Quad SPDT Analog Switches

DESCRIPTION

The DG2018 and DG2019 are low voltage, single supply analog switches. The DG2018 is a dual double-pole/doublethrow (DPDT) with two control inputs that each controls a pair of single-pole/double-throw (SPDT). The DG2019 uses one control pin to operate four independent SPDT switches.
When operated on a +3 V supply, the DG2018's control pins are compatible with 1.8 V digital logic. The DG2019 has an available feature of a V_{L} pin that allows a 1.0 V threshold for the control pin when V_{L} is powered with 1.5 V .
Built on Vishay Siliconix's low voltage submicron CMOS process, the DG2018 and DG2019 are ideal for high performance switching of analog signals; providing low onresistance (6Ω at +2.7 V), fast speed ($\mathrm{T}_{\mathrm{on}}, \mathrm{T}_{\text {off }}$ at 42 ns and 16 ns), and a bandwidth that exceeds 180 MHz .
The DG2018 and DG2019 were designed to offer solutions that extend beyond audio/video functions, to providing the performance required for today's demanding mixed-signal switching in portable applications.

An epitaxial layer prevents latch-up. Brake-before-make is guaranteed for all SPDT's. All switches conduct equally well in both directions when on, and blocks up to the power supply level when off.

FEATURES

- Low voltage operation (1.8 V to 5.5 V)
- Low on resistance
- $\mathrm{R}_{\mathrm{DS}(\mathrm{on}):} 6 \Omega$ at 2.7 V
- Low voltage logic compatible
- DG2019: $\mathrm{V}_{\mathrm{INH}}=1 \mathrm{~V}$
- High bandwidth: 180 MHz
- QFN-16 package

BENEFITS

- Ideal for both analog and digital signal switching
- Reduced power consumption
- High accuracy
- Reduced PCB space
- Fast switching
- Low leakage

APPLICATIONS

- Cellular phones
- Audio and video signal routing
- PCMCIA cards
- Battery operated systems
- Portable instrumentation

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE

IN1, IN2

Logic	NC1 and NC2	NO1 and NO2
0	ON	OFF
1	OFF	ON
IN3, IN4		
Logic	NC3 and NC4	NO3 and NO4
0	ON	OFF
1	OFF	ON

ORDERING INFORMATION		
Temp. Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	QFN-16 $(3 \times 3 \mathrm{~mm})$	DG2018DN

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE		
Logic	NC1, 2, 3 and 4	NO1, 2, 3 and 4
0	ON	OFF
1	OFF	ON

ORDERING INFORMATION		
Temp. Range	Package	Part Number
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	QFN-16 $(3 \times 3 \mathrm{~mm})$	DG2019DN

ABSOLUTE MAXIMUM RATINGS				Limit	Unit
Parameter	-0.3 to +6	V			
Reference V+ to GND	-0.3 to $(\mathrm{V}++0.3)$				
IN, COM, NC, NO	± 50	mA			
Continuous Current (Any terminal)	± 100				
Peak Current (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle)	-65 to 150	${ }^{\circ} \mathrm{C}$			
Storage Temperature (D Suffix)	850	mW			
Power Dissipation (Packages) ${ }^{\text {b }}$					

Notes:
a. Signals on NC, NO, or COM or IN exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $4.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.

SPECIFICATIONS $\mathrm{V}+=5 \mathrm{~V}$							
Parameter	Symbol	Test ConditionsOtherwise Unless Specified$\mathrm{V}+=5 \mathrm{~V}, \pm 10 \%$,(DG2018 Only) $\mathrm{V}_{\mathrm{IN}}=0.8$ or 1.8 Ve(DG2019 Only) $\mathrm{V}_{\mathrm{L}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0.4$ or 1.0 Ve	Temp. ${ }^{\text {a }}$	$\begin{gathered} \text { Limits } \\ -40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ \hline \end{gathered}$			Unit
				Min. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	Max. ${ }^{\text {b }}$	
Analog Switch							
Analog Signal Range ${ }^{\text {d }}$	$\begin{gathered} \mathrm{V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}, \\ \mathrm{~V}_{\mathrm{COM}} \end{gathered}$		Full	0		V+	V
On-Resistance	RON	$\mathrm{V}+=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA}$	Room Full		4	$\begin{gathered} \hline 8 \\ 10 \end{gathered}$	Ω
$\mathrm{R}_{\text {ON }}$ Flatness	$\begin{gathered} \hline \mathrm{R}_{\mathrm{ON}} \\ \text { Flatness } \end{gathered}$	$\begin{gathered} \mathrm{V}_{+}=4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{COM}}=0 \text { to } \mathrm{V}+, \mathrm{I}_{\mathrm{NO}}, \mathrm{I}_{\mathrm{NC}}=10 \mathrm{~mA} \end{gathered}$	Room		0.6	1.2	
$\mathrm{R}_{\text {ON }}$ Match Between Channels	$\Delta \mathrm{R}_{\text {ON }}$		Room		0.6	1.2	
Switch Off Leakage Current ${ }^{\dagger}$	$\mathrm{I}_{\mathrm{NO} \text { (off) }}$ ${ }^{\mathrm{I}} \mathrm{NC}$ (off)	$\begin{gathered} \mathrm{V}+=5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{NC}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{COM}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	$\begin{gathered} -1 \\ -10 \end{gathered}$	0.03	$\begin{gathered} 1 \\ 10 \end{gathered}$	nA
	$I_{\text {com(off) }}$		Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$	0.03	$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Channel-On Leakage Current ${ }^{\text {f }}$	$I_{\text {com(on) }}$	$\mathrm{V}+=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{NC}}=\mathrm{V}_{\mathrm{COM}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$	Room Full	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$	0.03	$\begin{gathered} \hline 1 \\ 10 \end{gathered}$	
Digital Control							
Input High Voltage	$\mathrm{V}_{\text {INH }}$	DG2018	Full	1.8			V
		$\mathrm{V}_{\mathrm{L}}=1.5 \mathrm{~V}$ DG2019	Full	1.0			
Input Low Voltage	$\mathrm{V}_{\text {INL }}$	DG2018	Full			0.8	
			Full			0.4	
Input Capacitance	$\mathrm{C}_{\text {in }}$		Full		9		pF
Input Current	$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	$\mathrm{V}_{\text {IN }}=0$ or $\mathrm{V}+$	Full	1		1	$\mu \mathrm{A}$
Dynamic Characteristics							
Turn-On Time	t_{ON}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Room Full		44	$\begin{aligned} & 48 \\ & 52 \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$		Room Full		19	$\begin{aligned} & 33 \\ & 35 \end{aligned}$	
Break-Before-Make Time	t_{d}	V_{NO} or $\mathrm{V}_{\mathrm{NC}}=3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Full	1			
Charge Injection ${ }^{\text {d }}$	$\mathrm{Q}_{\text {INJ }}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{GEN}}=0 \Omega$	Room		-2.46		pC
Off-Isolation ${ }^{\text {d }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$	Room		-67		dB
Crosstalk ${ }^{\text {d }}$	$\mathrm{X}_{\text {TALK }}$		Room		- 72		
Bandwidth ${ }^{\text {d }}$	BW		Room		180		MHz
Source-Off Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (off) }}$	$\mathrm{V}_{\mathrm{IN}}=0$ or $\mathrm{V}+\mathrm{f}=1 \mathrm{MHz}$	Room		7.5		pF
	$\mathrm{C}_{\mathrm{NC} \text { (off) }}$		Room		7.5		
Channel-On Capacitance ${ }^{\text {d }}$	$\mathrm{C}_{\mathrm{NO} \text { (on) }}$		Room		30		
	$\mathrm{C}_{\mathrm{NC} \text { (on }}$		Room		30		
Power Supply							
Power Supply Range	V+			1.8		5.5	V
Power Supply Current	$1+$	$\mathrm{V}_{\text {IN }}=0$ or V^{+}	Full		0.01	1.0	$\mu \mathrm{A}$

Notes:

a. Room $=25^{\circ} \mathrm{C}$, Full $=$ as determined by the operating suffix.
b. Typical values are for design aid only, not guaranteed nor subject to production testing.
c. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
d. Guarantee by design, nor subjected to production test.
e. $\mathrm{V}_{I N}=$ input voltage to perform proper function.
f. Not production tested.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

Switching Time vs. Temperature and Supply Voltage

Switching Voltage vs. Supply Voltage (V+)

Charge Injection at Source vs. Analog Voltage

Insertion Loss, Off Isolation and Crosstalk vs. Frequency

TEST CIRCUITS

Logic "1" = Switch On
Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

IN depends on switch configuration: input polarity determined by sense of switch.

Figure 2. Charge Injection

Figure 3. Break-Before-Make Interval

TEST CIRCUITS

Figure 4. Off-Isolation

Figure 5. Channel Off/On Capacitance

[^0]
Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?72342.

