

DS21448DK 3.3V E1/T1/J1 Line Interface Design Kit Daughter Card

www.maxim-ic.com

GENERAL DESCRIPTION

The DS21448DK is an easy-to-use evaluation board for the DS21448 quad E1/T1/J1 LIU. It is intended to be used as a daughter card with the DK101 motherboard or the DK2000 motherboard. A surfacemounted DS21448 and careful layout of the analog signal traces provide maximum signal integrity to demonstrate the transmit and receive capabilities of the DS21448. The DK101/DK2000 motherboard and Dallas' ChipView software give point-and-click access to configuration and status registers from a Windows®-based PC. On-board LEDs indicate interrupt status and receive-carrier loss for all four ports. The evaluation board provides both RJ45 and BNC connectors for the line-side transmit and receive differential pairs on all four ports.

Each DS21448DK is shipped with a free DK101 motherboard. For complex applications, the DK2000 high-performance demo kit motherboard can be purchased separately.

Windows is a registered trademark of Microsoft Corp.

ORDERING INFORMATION

PART	DESCRIPTION
DS21448DK	DS21448 Design Kit Daughter Card (with included DK101 Motherboard)

FEATURES

- Demonstrates Key Functions of the DS21448 Quad LIU
- Includes Transformers, BNC, and RJ45 Network Connectors and Termination Passives
- Compatible with DK101 and DK2000 Demo Kit Motherboards
- DK101/DK2000 and ChipView Software Provide Point-and-Click Access to the DS21448 Register Set
- Memory-Mapped FPGA Provides Flexible Clock and Signal Routing
- LEDs for Receive-Carrier Loss and Interrupt
- Easy-to-Read Silk-Screen Labels Identify the Signals Associated with All Connectors, Jumpers, and LEDs

DESIGN KIT CONTENTS

DS21448DK Design Kit Daughter Card DK101 Demo Kit Motherboard CD-ROM

> ChipView Software DS21448DK Data Sheet DS21448 Data Sheet DK101 Data Sheet DS21448 Errata Sheet

DESIGNATION	QTY	DESCRIPTION	SUPPLIER	PART
1	1	3.3V E1/T1/J1 line interface, 0°C to +70°C, 144-pin BGA	Dallas Semiconductor	DS21448
C1, C2, C6, C10, C12, C22, C24	7	$0.47 \mu F,25 V,10\%$ ceramic capacitors (1206)	Digi-Key	PCC1891CT-ND
C3–C5, C7, C8, C11, C21, C23, C25, C26	10	0.1μF, 16V, 10% ceramic capacitors (0603)	Digi-Key	311-1088-1-ND
C9	1	10μF, 16V, 20% tantalum capacitor (B case)	Digi-Key	PCS3106CT-ND
C13–C16	4	0.1µF, 25V, 10% ceramic capacitors (1206)	Digi-Key	PCC1883CT-ND
C17–C20	4	1µF, 16V, 10% ceramic capacitors (1206)	Digi-Key	PCC1882CT-ND
DS1–DS5	5	LED, red, SMD	Digi-Key	P500CT-ND
J1, J6–J13	9	Connector BNC RA, 5-pin	Kruvand	UCBJR220
J2	1	Connector, 10-pin, dual row, vertical	Digi-Key	S2012-05-ND
J3–J5		8-row by 2-column pin strip, 0.1" centers, 0.025" post	NA	Lab Stock
J14	1	RA RJ45, 8-pin, 4-port jack	Molex	43223-8140
J15, J16	2	Socket, SMD, 50-pin, dual row, vertical	Samtec	TFM-125-02-S-D-LC
R1–R16, R37–R41, R54–R57	25	0Ω, 1/8W, 5% resistors (1206)	Digi-Key	P0.0ETR-ND
R17, R20, R21, R25, R28–R36, R53	14	10kΩ, 1/10W, 1% resistors (0805)	Digi-Key	P10.0KCCT-ND
R18, R19, R22–R24, R26, R27	7	51.1Ω, 1/10W, 1% resistors (0805)	Digi-Key	P51.1CCT-ND
R42, R43	2	1.0kΩ, 1/10W, 1% resistors (0805)	Digi-Key	P1.00KCCT-ND
R44–R51	8	61.9Ω, 1/8W, 1% resistors (1206)	Digi-Key P61.9FCT-ND	
T1–T4	4	XFMR, dual, 16-pin SMT	Pulse Engineering	TX1099
U1	1	Xilinx CPLD 72 macrocell, 100-pin TQFP, 3.3V	Avnet	XC95142XL-10TQ100

COMPONENT LIST

BASIC OPERATION Hardware Configuration

Using the DK101 Processor Board

- Connect the daughter card to the DK101 processor board.
- Supply 3.3V to the banana-plug receptacles marked GND and VCC_3.3V. (The external 5V connector is unused. Additionally, the TIM 5V supply headers are unused.)
- All processor-board DIP switch settings should be in the ON position with the exception of the flashprogramming switch, which should be OFF.
- From the Programs menu, launch the host application named ChipView.EXE. Run the ChipView application. If the default installation options were used, click the Start button on the Windows toolbar and select Programs → ChipView → ChipView.

Using the DK2000 Processor Board

- Connect the daughter card to the DK2000 processor board.
- Connect J1 to the power supply that is delivered with the kit. Alternately, a PC power supply can be connected to connector J2.
- From the Programs menu, launch the host application named ChipView.EXE. Run the ChipView application. If the default installation options were used, click the Start button on the Windows toolbar and select Programs → ChipView → ChipView.

General

- Upon power-up, the RCL LEDs are lit, and the INT LED is off.
- After power-up, the RCL LEDs extinguish upon external loopback.
- Due to the dual winding transformer, only the 120Ω line build-out (LBO) configuration setting is needed to cover both 75Ω E1 and 120Ω E1.

Miscellaneous

- Clock frequencies are provided by a register-mapped CPLD, which is on the DS21448 daughter card.
- The definition file for this CPLD is named DS21448DK02A0_CPLD.def. See the CPLD Register Map definitions.

Quick Setup (Register View)

- The PC loads the program, offering a choice between DEMO MODE, REGISTER VIEW, and TERMINAL MODE. Select Register View.
- The program requests a definition file. Select DS21448DK02A0_CPLD.DEF.
- The Register View Screen appears, showing the register names, acronyms, and values. Note the CPLD def file contains a link such that the def file for the DS21448 is also loaded. Selection among the def files is accomplished using the drop-down box on the right-hand side of the program window.
- From the drop-down box, select the DS21448 def file and configure register CCR3 of ports 1 through 4 with a 90h.
 - The device begins transmitting a pseudo-random bit sequence. Upon external loopback, the RCL LED extinguishes, denoting that the device has found a carrier and has successfully decoded the pseudorandom bit sequence. For more advanced configurations, please refer to the DS21448 data sheet.

ADDRESS MAP

The DK101 daughter card address space begins at 0x81000000.

The DK2000 daughter card address space begins at: 0x30000000 for slot 0 0x40000000 for slot 1

0x50000000 for slot 2

0x6000000 for slot 3

All offsets in the *Daughter Card Address Map* table are relative to the beginning of the Daughter Card address space.

Daughter Card Address Map

OFFSET	DEVICE	FUNCTION
0X0000 to 0X0015	CPLD	Board ID, clock and signal routing
0X2000 to 0X2015	LIU Port 1	
0X3000 to 0X3015	LIU Port 2	Board is populated with either the DS21Q348 or the DS21448.
0X4000 to 0X4015	LIU Port 3	Please see the factory data sheet for details.
0X5000 to 0X5015	LIU Port 4	

Registers in the CPLD can be easily modified using ChipView, a host-based user-interface software with the definition file named DS21448DK02A0_CPLD.DEF. This file is included as part of the design kit documentation download (accessed through the DS21448's quick view data sheet) or the included CD-ROM. The definition file for the LIU is named DS21448.def.

CPLD Register Map

	-		
OFFSET	REGISTER	TYPE	FUNCTION
0X0000	BID	Read-Only	Board ID
0X0001	—	—	Unused
0X0002	XBIDH	Read-Only	High Nibble Extended Board ID
0X0003	XBIDM	Read-Only	Middle Nibble Extended Board ID
0X0004	XBIDL	Read-Only	Low Nibble Extended Board ID
0X0005	BREV	Read-Only	Board FAB Revision
0X0006	AREV	Read-Only	Board Assembly Revision
0X0007	PREV	Read-Only	PLD Revision
0X0011	MCLK_SRC	Read-Write	MCLK Source Register
0X0012	TCLK1_SRC	Read-Write	TCLK1 Source Register
0X0013	TCLK2_SRC	Read-Write	TCLK2 Source Register
0X0014	TCLK3_SRC	Read-Write	TCLK3 Source Register
0X0015	TCLK4_SRC	Read-Write	TCLK4 Source Register

ID Registers

OFFSET	NAME	FUNCTION
0X0000	BID	Board ID. BID is read-only with a value of 0xD.
0X0002	XBIDH	High Nibble Extended Board ID. XBIDH is read-only with a value of 0x00.
0X0003	XBIDM	Middle Nibble Extended Board ID. XBIDM is read-only with a value of 0x02.
0X0004	XBIDL	Low Nibble Extended Board ID. XBIDL is read-only with a value of 0x00.
0X0005	BREV	Board FAB Revision. BREV is read-only and displays the current fab revision.
0X0006	AREV	Board Assembly Revision. AREV is read-only and displays the assembly revision.
0X0007	PREV	PLD Revision. PREV is read-only and displays the current PLD firmware revision.

Control Registers

2048MHZ

1544MHZ

The control registers are used set the clock frequency on the MCLK and TCLK pins. Options are 1.544MHz, 2.048MHz, external source (through AUX CLK BNC), and tri-state.

1 = Connect MCLK to the 2.048MHz clock.

1 = Connect MCLK to the 1.544MHz clock.

MCLK_SRC: MCLK SOURCE (OFFSET = 0x0011) INITIAL VALUE = 0x1

(MSB)							(LSB)
—	_	_		HI_Z	EXTOSC	2048MHZ	1544MHZ
NAME	F	POSITION	FUNCTION				
HI Z	M	CLK SRC.3	1 = Tri-state MCLK.				
EXTOSC	M	CLK SRC.2	1 = Connect MCLK to the external oscillator.				

TCLK1_SRC: TCLK SOURCE (OFFSET = 0x0012) INITIAL VALUE = 0x1

MCLK_SRC.1

MCLK SRC.0

(MSB)								(LSB)
—		-	—	—	HI Z	EXTOSC	2048MHZ	1544MHZ
					FUNCTION			

NAME	POSITION	FUNCTION
HI_Z	TCLK1_SRC.3	1 = Tri-state TCLK1.
EXTOSC	TCLK1_SRC.2	1 = Connect TCLK1 to the external oscillator.
2048MHZ	TCLK1_SRC.1	1 = Connect TCLK1 to the 2.048MHz clock.
1544MHZ	TCLK1_SRC.0	1 = Connect TCLK1 to the 1.544MHz clock.

TCLK2_SRC: TCLK SOURCE (OFFSET = 0x0013) INITIAL VALUE = 0x1

(MSB)							(LSB)
	—	_	—	HI Z	EXTOSC	2048MHZ	1544MHZ

NAME	POSITION	FUNCTION
HI_Z	TCLK2_SRC.3	1 = Tri-state TCLK2.
EXTOSC	TCLK2_SRC.2	1 = Connect TCLK2 to the external oscillator.
2048MHZ	TCLK2 SRC.1	1 = Connect TCLK2 to the 2.048MHz clock.
1544MHZ	TCLK2 SRC.0	1 = Connect TCLK2 to the 1.544MHz clock.

TCLK3_SRC: TCLK SOURCE (OFFSET = 0x0014) INITIAL VALUE = 0x1

(MSB)							(LSB)
—	—	—	—	HI_Z	EXTOSC	2048MHZ	1544MHZ

NAME	POSITION	FUNCTION
HI Z	TCLK3 SRC.3	1 = Tri-state TCLK3.
EXTOSC	TCLK3 SRC.2	1 = Connect TCLK3 to the external oscillator.
2048MHZ	TCLK3_SRC.1	1 = Connect TCLK3 to the 2.048MHz clock.
1544MHZ	TCLK3_SRC.0	1 = Connect TCLK3 to the 1.544MHz clock.

TCLK4_SRC: TCLK SOURCE (OFFSET = 0x0015) INITIAL VALUE = 0x1

(MSB) (LSB										
—		—	_	HI_Z	EXTOSC	2048MHZ	1544MHZ			
NAME	NAME POSITION			FUNCTION						
HI_Z	TC	LK4_SRC.3	1 = Tri-sta	te TCLK4.						
EXTOSC	TC	LK4_SRC.2	1 = Connect TCLK4 to the external oscillator.							
2048MHZ	TC	LK4_SRC.1	1 = Connect TCLK4 to the 2.048MHz clock.							
1544MHZ	TC	LK4_SRC.0	1 = Conne	ect TCLK4 to t	the 1.544MHz	clock.				

DS21448 INFORMATION

For more information about the DS21448, please consult the DS21448 data sheet available on our website, <u>www.maxim-ic.com/telecom</u>.

TECHNICAL SUPPORT

For additional technical support, please email your questions to telecom.support@dalsemi.com.

SCHEMATICS

The D21448DK schematics are featured in the following pages.

DS21Q348 / DS21448 DESIGN KIT DS21Q348DK02A0

4

з

5

CONTENTS

8

п

B

1. COVER PAGE

2. DS21Q348

3, PROCESSOR INTERFACE

4. PROGRAMABLE LOGIC AND PIN BIAS

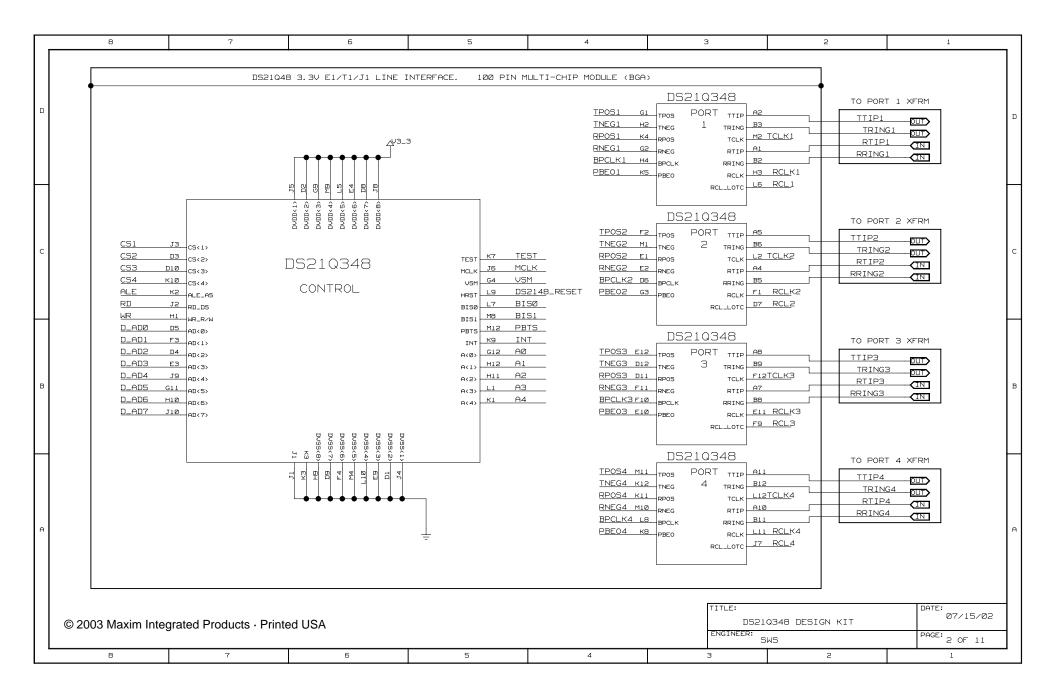
5-8. LINE INTERFACE FOR PORTS 1--4

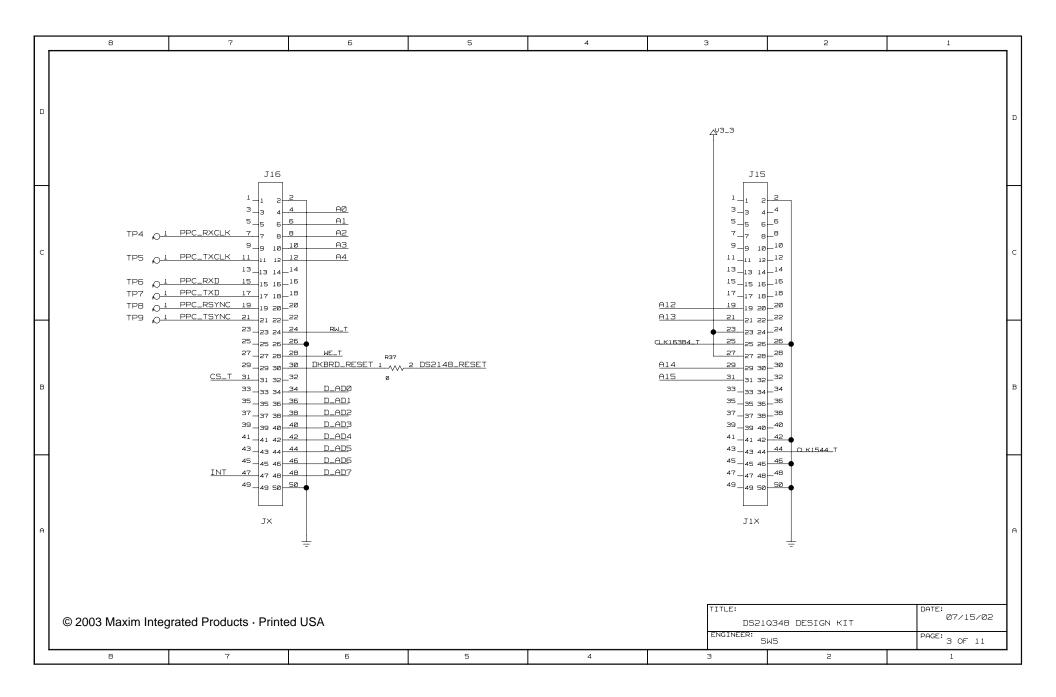
9. DIGITAL INTERFACE FOR PORTS 1--4

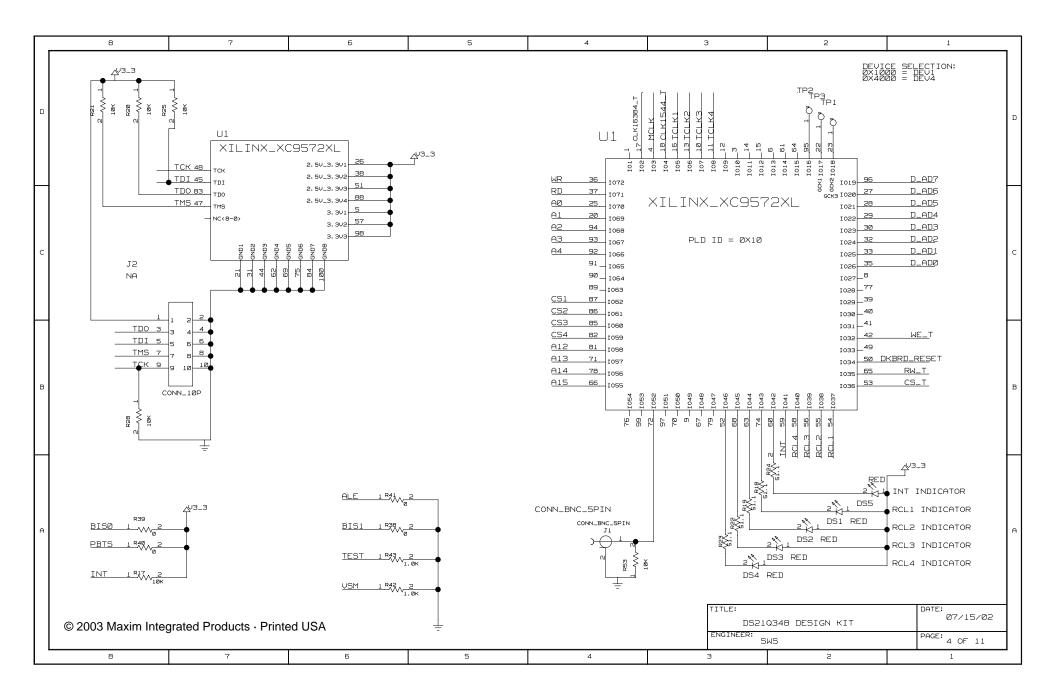
7

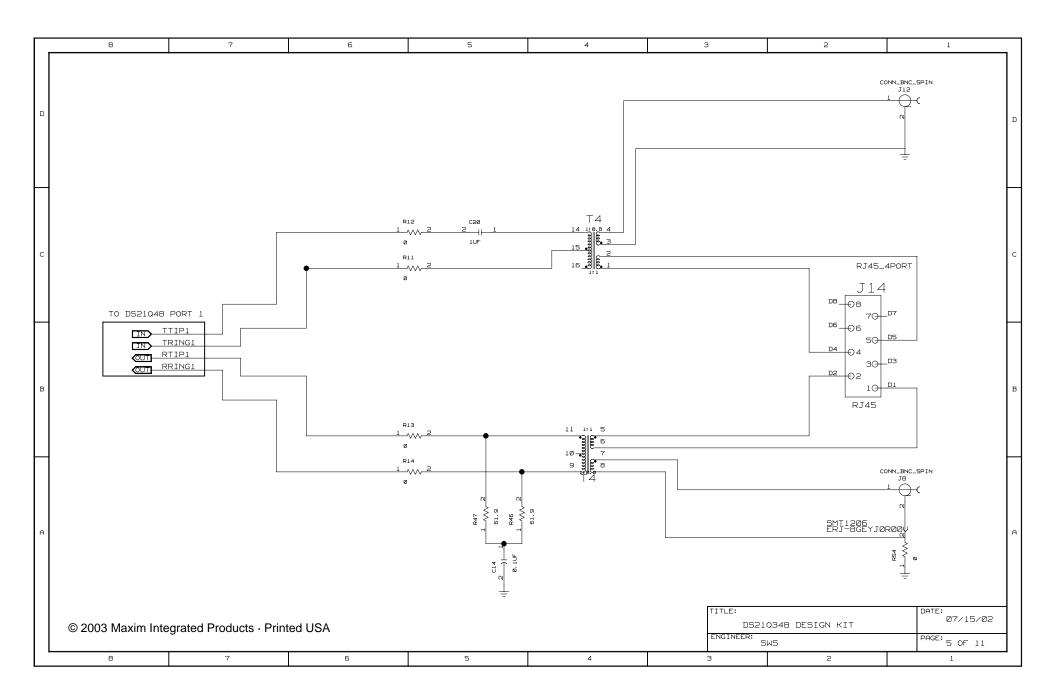
6

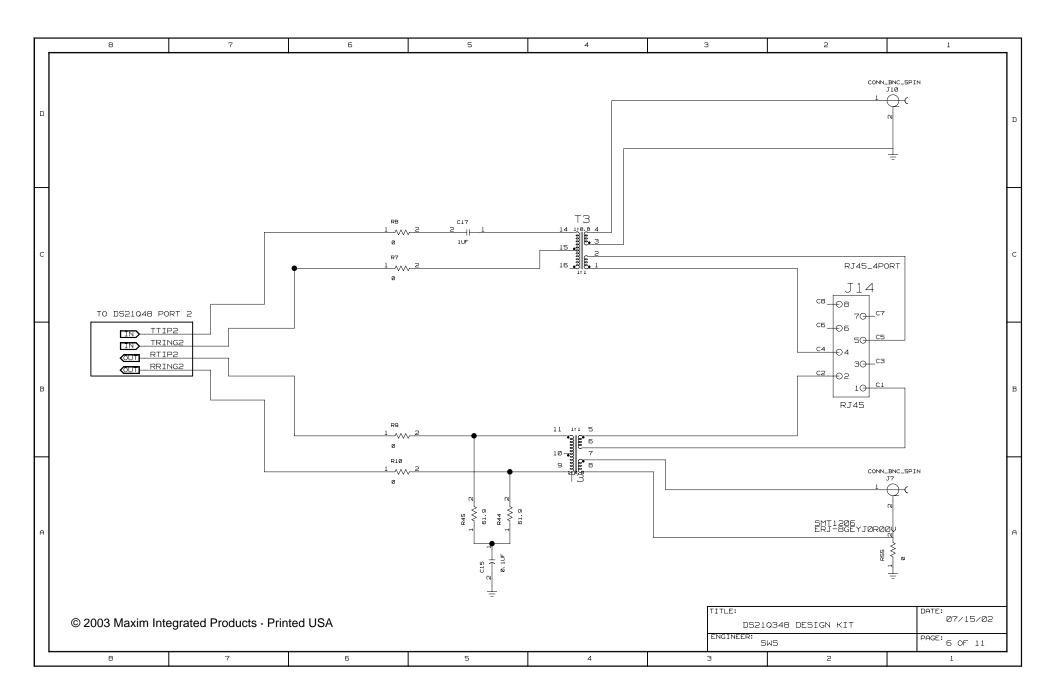
10. NETLIST CROSS REFERENCE

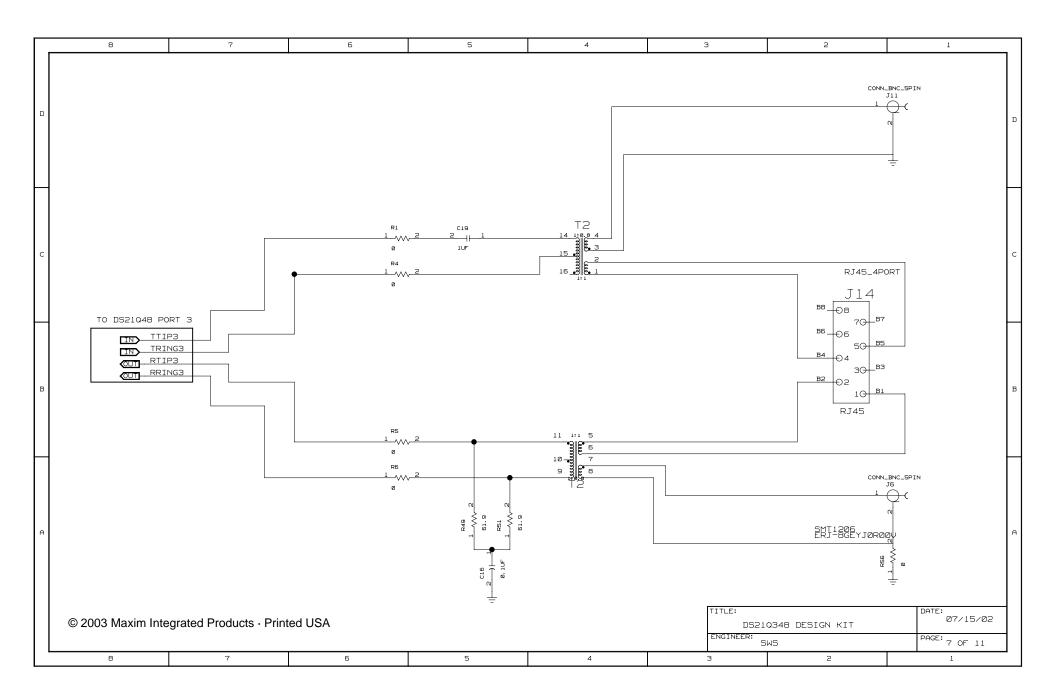

11. PART CROSS REFERENCE

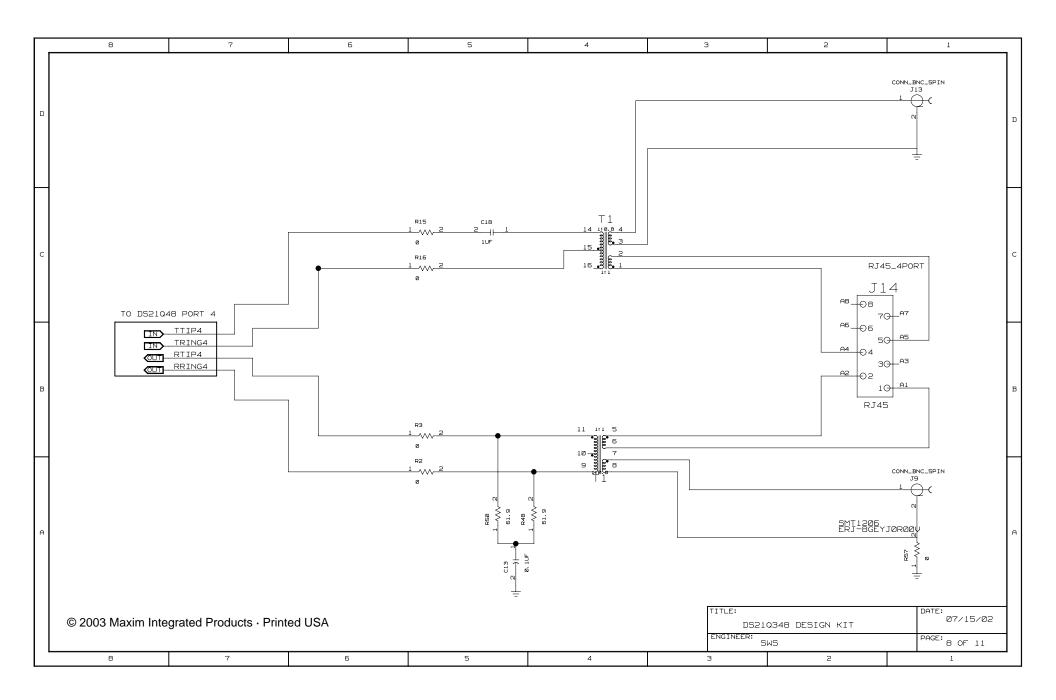

© 2003 Maxim Integrated Products · Printed USA


2


1


					ENGINEER:	Q348 DESIGN KIT WS	DATE: 07/15/02 PAGE: 1 OF 11
8	7	6	5	4	3	2	1





	8	7	Б	5	4	З	2	1
а	A0 3C5 A1 3C6 A2 3C5 A3 3C6 A4 2B4C A12 3C3 A13 3B3C A14 3B3C A15 3B3C A15 3B3C A15 2B3C B150 2C4C4 B1S1 2B4C BPCLK1 2D45	484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484<> 484< 484<	TCLK3 4D3 9C1 2 TCLK4 4D3 9C1 2 TDI 4B8 4C8 TD0 TDO 4B8 4C8 TD0 TEST 2C4 4B8 4C7 TNEG1 5D4 5D4 5D7 TNEG2 5D4 2C4 5D TNEG3 5C4 2A4 5D TNEG3 5C4 2A4 5D TNEG4 5C4< 2A4 5D TP051 5D5 2C4 2D TP052 5D5 2C4 5D TP053 9C5 2A4 9C TP054 9C5 2A4 9C TRING1 2D1> 5B8 5D	172 (173 (173 (174 (174 (174 (184 (
с	D_AD1 286<> D_AD2 286<> D_AD3 286<> D_AD4 286<> D_AD5 286<>	BB2↔ BB2↔ 4D4↔ 2C8← 2C8← 2C8← 2C8← 4B1↔ 4B1↔	TRING2 2215 5884 TRING3 2815 7884 TTIP1 2015 5886 TTIP2 2215 5884 TTIP3 2815 7884 USH 2615 6884 USH 2614 8886 USH 2644 4864 WR 4C44 2884					
в	D_AD7 288c-x INT 284c-x MCLK 4D3c-x PBE01 2D4x PBE03 284x PBE03 284x PBE03 284x PBC-RSYNC 3C7x-x PPC_RSYNC 3C7x-x PPC_RSYNC 3C7x-x PPC_TSYNC 3C7x-x PPC_TSYNC 3C7x-x PPC_TSYNC 3C7x-x PPC_TSYNC 3C7x-x PPC_TSYNC 3C7x-x PPC_TSYNC 3C7x-x PRC_TS 284x-x RCL2 2C2x-x RCL3 282x-x RCL4 282x-x RCL4 282x-x	3A65 + 4C1(> 3A96(2003) 207(> 4A2(> 4A96(2003) 202(> 9B3(> 9C3(9D2(> 2023) 202(> 2023) 202(> 2023) 202(> 2023) 2023) 2023(> 2023) 2023(> 2023(> 2023) 2023(> 2023(> 2023(> 2023) 2023(> 2023(> 2023(> 2023) 2023(>> 2023(>> 2023(> 2023(> 2023(> 2023(>> 2023(> 2023(> 2023(>						
A	RCLK2 2C2> 0 RCLK3 2E2> 0 RCLK4 2E2> 0 RD 4C4<>/td> RNEG1 2D4> 0 RNEG2 2C4+ 0 RNEG3 2E4+ 0 RN051 2D4+ 0 RN052 2C4+ 0 RN053 2E4+ 0 RN051 2E4+ 0 RN052 2C4+ 0 RR053 2E4+ 0 RR053 2E4+ 0 RR054 2E4+ 0 RR1NG2 6BB> 2 RR1NG3 7BB> 2 RR1NG4 6BB> 2 RT1P3 7BB> 2 RT1P3 7BB> 2 RT1P3 7BB> 2 RT1P4 6BB> 2 RT1P3 7BB> 2	IC2(>) IC2(>) IC3()					axim Integrated Produc	
		4D8< 9D1<> 2D2< 9D1<> 2C2<				ENGINEER:	Q348 DESIGN KIT SWS	DATE: 07/15/02 PAGE: 10 OF 11
L	8	7	6	5	4	З	2	1

	8	7	6	5	4	З	2	1
٦	*** Part Cross-Rafarance fo 1 D5210348 2A3 2B3 2BE C1 CAP 9A4 C2 CAP 9A5 C3 CAP 9A3 C4 CAP 9A3 C5 CAP 9A3 C5 CAP 9A5 C6 CAP 9A5 C7 CAP 9A2 C8 CAP 9B5 C10 CAP 9A5 C11 CAP 9A5		R28 RES 488 R29 RES 9C7 R30 RES 9C8 R31 RES 9D8 R32 RES 9C7 R34 RES 9D8 R35 RES 9D7 R36 RES 9D7 R37 RES 9D7 R38 RES 9D7 R36 RES 9D7 R37 RES 9D7 R38 RES 4A6 R39 RES 4A6 R40 RES 4A6 R41 RES 4A6 R42 RES 4A6 R42 RES 4A6 R42 RES 4A6 R42 RES 4A6					
с	C13 CAP BAS C14 CAP SAS C15 CAP SAS C16 CAP SAS C17 CAP BCS C18 CAP BCS C19 CAP SCS C19 CAP SCS C20 CAP SCS C21 CAP SA C22 CAP SA4 C23 CAP SA3 C24 CAP SA3 C24 CAP SA3 C25 CAP SA3 C25 CAP SA2 DS1 LED 4A2 DS3 LED 4A3 DS4 LED 4A3 DS5 LED 4A2		R43 RES A46 R44 RES 6A5 R45 RES 6A5 R45 RES 5A5 R47 RES 5A5 R48 RES 5A5 R48 RES 5A5 R48 RES 7A5 R58 RES 7A5 R58 RES 7A5 R53 RES 4A4 R54 RES 5A1 R55 RES 7A2 R56 RES 7A2 R57 RES 8A1 T1 XTMR_2IN_40UT 6A4 8C4 T2 XTMR_2IN_40UT 6A4 8C4 T3 XTMR_2IN_40UT 5A4 5C4 T1 TSTENT_SNG 4D2 5C4					
в	J1 CONN_BNC_5PIN 4A4 J2 CONN_16P 4C8 J3 CONN_16P 9D4 J4 CONN_16P 9D2 J5 CONN_16P 9D2 J5 CONN_9C5PIN 5A2 J7 CONN_BNC_5PIN 5A2 J7 CONN_BNC_5PIN 5A2 J8 CONN_BNC_5PIN 5A1 J10 CONN_BNC_5PIN 5D1 J11 CONN_BNC_5PIN 5D1 J11 CONN_BNC_5PIN 5D1 J12 CONN_BNC_5PIN 5D1 J13 CONN_BNC_5PIN 5D1 J14 R145_8 5C2 5C2 7C2 J15 CONN_50P2 3D3 J15 CONN_50P2 3D3 J15 CONN_50P2 3D3 J16 CONN_50P2 3D3	8C2	TP2 TSTRNT_SNG 4D2 TP3 TSTRNT_SNG 4D2 TP4 TSTRNT_SNG 4D2 TP5 TSTRNT_SNG 3C8 TP6 TSTRNT_SNG 3C8 TP7 TSTRNT_SNG 3C8 TP7 TSTRNT_SNG 3C8 TP7 TSTRNT_SNG 3C8 TP9 TSTRNT_SNG 3C8 U1 XILINX_XCS572XL 4D4					
A	R4 RES TCB R5 RES 7B5 R6 RES 7B6 R7 RES 6C6 R9 RES 6C6 R9 RES 6C6 R10 RES 6C6 R11 RES 5C6 R12 RES 5C6 R13 RES 5C6 R14 RES 5C6 R14 RES 5C6 R14 RES 5B6 R14 RES 5B6 R14 RES 5B6 R15 RES 8C5 R16 RES 4A9 R17 RES 4A9 R21 RES 4D8 R21 RES 4D8 R22 RES 4D8 R23 RES 4A3 R24 RES 4A2 R25 RES 4D8 R24 RES 9C2					TITLE: DS21 ENGINEED:	axim Integrated Produ	DATE: 07/15/02
L	8	7	б	5	4	ENGINEER: S	WS	PAGE: 11 OF 11
	B	1	ь 	5	4	3	2	1