RF Power MOSFET Transistor 80W, 2-175MHz, 28V

Features

- N-Channel enhancement mode device
- DMOS structure
- Lower capacitances for broadband operation
- High saturated output power
- Lower noise figure than competitive devices

ABSOLUTE MAXIMUM RATINGS AT 25° C

Parameter	Symbol	Rating	Units
Drain-Source Voltage	V _{DS}	65	V
Gate-Source Voltage	V _{GS}	20	V
Drain-Source Current	I _{DS}	8*	А
Power Dissipation	PD	206	W
Junction Temperature	TJ	200	°C
Storage Temperature	T _{STG}	-55 to +150	°C
Thermal Resistance	θ _{JC}	0.85	°C/W

TYPICAL DEVICE IMPEDANCE

F (MHz)	Z _{IN} (Ω)	Z _{LOAD} (Ω)			
30	4.5 - j14.5	13.5 +j4.5			
100	3.0 - j10.5	13.5 + j6.0			
175	2.0 - j7.5	12.0 + j4.5			
V_{DD} = 28V, I_{DQ} = 400mA, P_{OUT} = 80 W					

ELECTRICAL CHARACTERISTICS AT 25°C

 Infor*±.010* [4.24±0.25]
 T

 UNLESS OTHERWISE NOTED, TOLERANCES ARE INCHES ±.005* [MILLIMETERS ±0.13MM]

 ZLOAD (Ω)

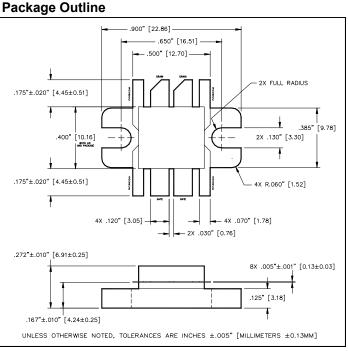
 5
 13.5 + j4.5

 ZLOAD (Ω)

 Z_{LOAD} is the optimum series equivalent load impedance as measured from drain to ground.

Parameter	Symbol	Min	Max	Units	Test Conditions
Drain-Source Breakdown Voltage	BV _{DSS}	65	-	V	$V_{GS} = 0.0 \text{ V}$, $I_{DS} = 10.0 \text{ mA}$
Drain-Source Leakage Current	I _{DSS}	-	2.0	mA	V_{GS} = 28.0 V , V_{GS} = 0.0 V
Gate-Source Leakage Current	I _{GSS}	-	2.0	μA	V_{GS} = 20.0 V , V_{DS} = 0.0 V
Gate Threshold Voltage	V _{GS(TH)}	2.0	6.0	V	V _{DS} = 10.0 V , I _{DS} = 200.0 mA
Forward Transconductance	G _M	1.0	-	S	V_{DS} = 10.0 V , I_{DS} = 2000.00 mA , $~\Delta$ V_{GS} = 1.0V, 80 μs Pulse
Input Capacitance	C _{ISS}	-	90	pF	V _{DS} = 28.0 V , F = 1.0 MHz
Output Capacitance	C _{OSS}	-	80	pF	V _{DS} = 28.0 V , F = 1.0 MHz
Reverse Capacitance	C _{RSS}	-	16	pF	V _{DS} = 28.0 V , F = 1.0 MHz
Power Gain	G _P	13	-	dB	V_{DD} = 28.0 V, I_{DQ} = 400 mA, P_{OUT} = 80.0 W F =175 MHz
Drain Efficiency	ŋ _D	60	-	%	V_{DD} = 28.0 V, I_{DQ} = 400 mA, P_{OUT} = 80.0 W F =175 MHz
Load Mismatch Tolerance	VSWR-T	-	30:1	-	V _{DD} = 28.0 V, I _{DQ} = 400 mA, P _{OUT} = 80.0 W F =175 MHz

*Per side

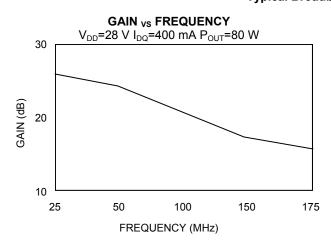

Commitment to produce in volume is not guaranteed.

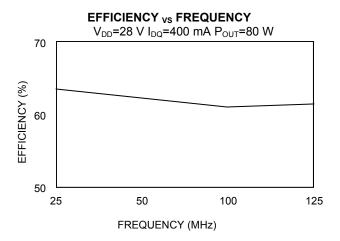
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

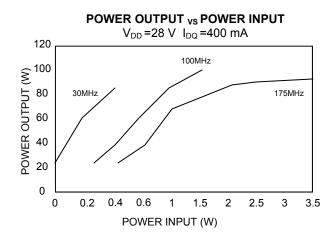
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

M/A-COM Products Released; RoHS Compliant

1


ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are




RF Power MOSFET Transistor 80W, 2-175MHz, 28V

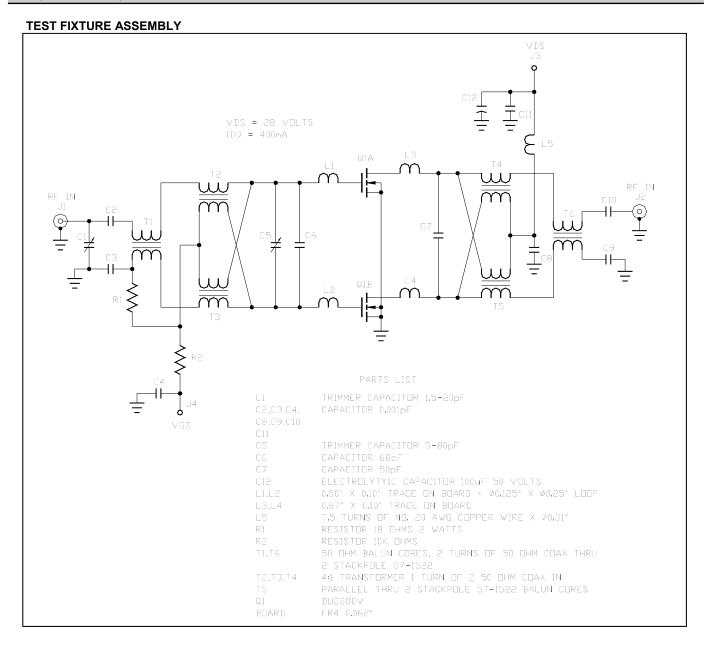
M/A-COM Products Released; RoHS Compliant

POWER OUTPUT vs SUPPLY VOLTAGE F=175MHz I_{DQ}=400 mA P_{IN}=1.5 W 90 75 60 45 30 15 0 16 20 25 30

SUPPLY VOLTAGE (V)

ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.


M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Typical Broadband Performance Curves

DU2880V

M/A-COM Products Released; RoHS Compliant

- ADVANCED: Data Sheets contain information regarding a product M/A-COM Technology Solutions is considering for development. Performance is based on target specifications, simulated results, and/or prototype measurements. Commitment to develop is not guaranteed. **PRELIMINARY:** Data Sheets contain information regarding a product M/A-COM Technology Solutions has under development. Performance is based on engineering tests. Specifications are typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.
- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298
 Visit www.macomtech.com for additional data sheets and product information.

M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.