E910.94

I/O IC SENSOR IC

► Sensorless speed control of DC-motors

FEATURES

- Supply voltage range VDD 7V to 16V
- Low standby current typ. 40μA
- Speed regulation using the ripple signal of motor current
- Evaluation of commutation ripple signal
- Fully protected half bridge (slew rate, gate voltage and temperature)
- Overlap free PWM actuation for external power MOS half bridge
- Internal charge pump for 100% actuation
- Adjustable maximum motor voltage
- Conditioning of motor current for external μP and ADC
- Watch dog with emergency function depending on the Kl. 15 signal
- CRASH input for emergency shutoff of pump
- STATUS output for failure analysis
- Over voltage shutdown
- Over temperature shutdown
- ► -40°C to +125°C operating temperature
- ► SO 24w package

The IC is designed to control the speed of DC-motors. In order to determine the motor speed the commutation-related ripple of the motor current is evaluated and converted to a 5V digital signal for the μC . The filtered motor current is also buffered and provided to the μ C's ADC. Many types of motors can be adapted with appropriate filter design.

RIPPLE COUNTER

► Speed control

The nominal motor voltage, provided by the μC is converted into a 20kHz PWM signal used to drive the power MOS half bridge. Duty cycle of 100% is possible due to an implemented charge pump.

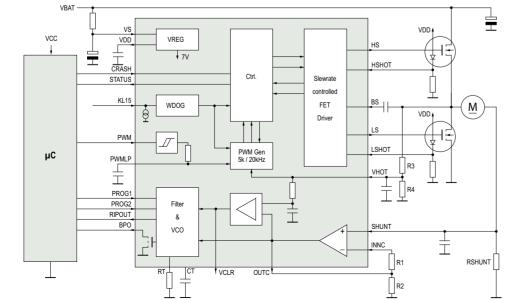
The CRASH signal immediately stops the motor in case of an error. An over-temperature driver shut down is provided with appropriate TEMPFET transistors. With an integrated power supply and watch dog, an emergency function with maximum motor drive can be realized in case the μC fails.

APPLICATION

- Fuel and hydraulic pumps regulator
- ► Fan regulator
- Speed regulator

PINNING

DRIVER IC


Pin	Name	Description		
1	CRASH	Digital input crash signal		
2	ВРО	Bandpass output		
3	VCRL	VCO control voltage		
4	OUTC	Current amplifier output		
5	INNC	Current amplifier, inverting input		
6	SHUNT	Current amplifier, non-inverting input		
7	VDD	5 V voltage control output		
8	GND	Ground		
9	KL15	Signal input Kl. 15		
10	LS	Gate output for low side driver		
11	VMOT	Input motor voltage		
12	LSOT	Over voltage control of low side driver		
13	HSOT	Over voltage control of high side driver		
14	VBS	I/O for bootstrap voltage		
15	HS	Gate output for high side driver		
16	VDD2	Positive supply voltage, battery voltage		
17	PROG1	Programming of filter gain		
18	PROG2	Programming of filter gain		
19	RIPOUT	Digital output ripple signal		
20	PWM	PWM input motor target value		
21	PWMLP	Pin for PWM lowpass capacitor		
22	СТ	Timing capacitor for VCO		
23	RT	Timing resistor for VCO		
24	STATUS	Digital output for status signal		

PACKAGE

CRASH		24	STATUS
BPO	☐ 2	23	RT
VCRL	□ 3	22	CT
OUTC	4	21	PWMLP
INNC	☐ 5	20	PWM
SHUNT	□ 6	19	RIPOUT
VDD	7	18	PROG2
GND	□ 8	17	PROG1
KL15	9	16	VDD2
LS	1 0	15	HS
VMOT	11	14	VBS
LSOT	12	13	HSOT

BLOCK DIAGRAM

50

Note ELMOS Semiconductor AG (below ELMOS) reserves the right to make changes to the product contained in this publication without notice. ELMOS assumes no responsibility for the use of any circuits described herein, conveys no licence under any patent or other right, and makes no representation that the circuits are free of patent infringement. While the information in this publication has been checked, no responsibility, however, is assumed for inaccuracies. ELMOS does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of a life-support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications.