EL2210C/11C, EL2310C/11C, EL2410C/11C Low Cost, Dual, Triple and Quad Video Op Amps

Features

- Stable at gain of 2 and 100 MHz gain_bandwidth product (EL2211C, EL2311C, \& EL2411C)
- Stable at gain of 1 and 50 MHz gain_bandwidth product
(EL2210C, EL2310C, \&
EL2410C)
- $130 \mathrm{~V} / \mu \mathrm{s}$ slew rate
- Drives 150Ω load to video levels
- Inputs and outputs operate at negative supply rail
- $\pm 5 \mathrm{~V}$ or +10 V supplies
- -60 dB isolation at 4.2 MHz

Applications

- Consumer video amplifiers
- Active filters/integrators
- Cost-sensitive applications
- Single supply amplifiers

Ordering Information

Part No	Package	Tape \& Reel	Outline \#
EL2210CN	8-Pin PDIP	-	MDP0031
EL2210CS	8-Pin SO	-	MDP0027
EL2210CS-T7	8-Pin SO	$7^{\prime \prime}$	MDP0027
EL2210CS-T13	8-Pin SO	$13 "$	MDP0027
EL2211CN	8-Pin PDIP	-	MDP0031
EL2211CS	8-Pin SO	-	MDP0027
EL2310CN	8-Pin PDIP	-	MDP0031
EL2310CS	8-Pin SO	-	MDP0027
EL2311CN	8-Pin PDIP	-	MDP0031
EL2311CS	8-Pin SO	-	MDP0027
EL2410CN	14-Pin PDIP	-	MDP0031
EL2410CS	14-Pin SO	-	MDP0027
EL2410CS-T7	14-Pin SO	$7 "$	MDP0027
EL2410CS-T13	14-Pin SO	$13^{\prime \prime}$	MDP0027
EL2411CN	14-Pin PDIP	-	MDP0031
EL2411CS	14-Pin SO	-	MDP0027

General Description

This family of dual, triple, and quad operational amplifiers built using Elantec's Complementary Bipolar process offers unprecedented high frequency performance at a very low cost. They are suitable for any application such as consumer video, where traditional DC performance specifications are of secondary importance to the high frequency specifications. On $\pm 5 \mathrm{~V}$ supplies at a gain of +1 the EL2210C, EL2310C, and EL2410C will drive a 150Ω load to +2 V , -1 V with a bandwidth of 50 MHz and a channel-to-channel isolation of 60 dB or more. At a gain of +2 , the EL2211C, EL2311C, and EL2411C will drive a 150Ω load to $+2 \mathrm{~V},-1 \mathrm{~V}$ with a bandwidth of 100 MHz with the same channel-to-channel isolation. All four achieve 0.1 dB bandwidth at 5 MHz .
The power supply operating range is fixed at $\pm 5 \mathrm{~V}$ or $+10 / 0 \mathrm{~V}$. In single supply operation the inputs and outputs will operate to ground. Each amplifier draws only 7 mA of supply current.

Connection Diagrams

Note: All information contained in this data sheet has been carefully checked and is believed to be accurate as of the date of publication; however, this data sheet cannot be a "controlled document". Current revisions, if any, to these specifications are maintained at the factory and are available upon your request. We recommend checking the revision level before finalization of your design documentation

[^0]

EL2210C/11C, EL2310C/11C, EL2410C/11C Low Cost, Dual, Triple and Quad Video Op Amps

EL2211C, EL2311C, EL2411C - DC Electrical Characteristics
$V_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{A}_{\mathrm{V}}=+2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Parameter	Description	Conditions	Min	Typ	Max	Unit
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage			5	12	mV
TCVOS	Average Offset Voltage Drift ${ }^{[1]}$			-25		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		-15	-7	-3	$\mu \mathrm{A}$
IOS	Input Offset Current			0.5	1.5	$\mu \mathrm{A}$
TCI ${ }_{\text {OS }}$	Average Offset Current Drift ${ }^{[1]}$			-7		$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
Avol	Open-Loop Gain	$\mathrm{V}_{\text {OUT }}= \pm 2 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	250	380		V/V
		$\mathrm{V}_{\text {OUT }}=+2 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega$	250	380		
PSRR	Power Supply Rejection	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$	55	68		dB
CMRR	Common Mode Rejection	$\mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	70	90		dB
CMIR	Common Mode Input Range	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$		-5/+3		V
V OUT	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega \mathrm{R}_{\mathrm{L}}$ to GND	2.5	-3.5, 3.3	2.7	V
		$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega+1503 / 4$ to GND	-0.45	-0.6, 2.9	2.5	
		$\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega \mathrm{R}_{\mathrm{L}}$ to V_{EE}	-4.95		3	
ISC	Output Short Circuit Current	Output to GND (Note 1)	75	125		mA
I_{S}	Supply Current	No Load	5.5	6.8	10	mA
$\mathrm{R}_{\text {IN }}$	Input Resistance	Differential		150		$\mathrm{k} \Omega$
		Common Mode		1.5		$\mathrm{M} \Omega$
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{A}_{\mathrm{V}}=+1$ @ 10 MHz		1		pF
R ${ }_{\text {OUT }}$	Output Resistance			0.150		Ω
PSOR	Power Supply Operating Range	Dual Supply	± 4.5		± 6.5	V
		Single Supply	9		13	

1. A heat-sink is required to keep junction temperature below absolute maximum when an output is shorted

EL2210C/11C, EL2310C/11C, EL2410C/11C						
EL2210C, EL2310C, EL2410C - Closed-Loop AC Characteristics $\mathbf{V}_{\mathrm{S}}= \pm \mathbf{V} \mathrm{V}$, AC Test Figure $1, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.						
Parameter	Description	Conditions	Min	Typ	Max	Unit
BW	-3 dB Bandwidth ($\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}_{\text {PP }}$)	$\mathrm{A}_{\mathrm{V}}=+1$		110		MHz
BW	$\pm 0.1 \mathrm{~dB}$ Bandwidth ($\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}_{\text {PP }}$)	$\mathrm{A}_{\mathrm{V}}=+1$		12		MHz
GBWP	Gain Bandwidth Product			55		MHz
PM	Phase Margin			60		${ }^{\circ} \mathrm{C}$
SR	Slew Rate		85	130		V/us
FBWP	Full Power Bandwidth ${ }^{[1]}$		8	11		MHz
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	0.1V Step		2		ns
OS	Overshoot	0.1V Step		15		\%
$t_{\text {PD }}$	Propagation Delay			3.5		ns
ts	Settling to $0.1 \%\left(\mathrm{~A}_{V}=1\right)$	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, 2 \mathrm{~V}$ Step		80		ns
d_{G}	Differential Gain ${ }^{[2]}$	NTSC/PAL		0.1		\%
dp	Differential Phase ${ }^{[2]}$	NTSC/PAL		0.2		${ }^{\circ} \mathrm{C}$
e_{N}	Input Noise Voltage	10 kHz		15		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{N}	Input Noise Current	10 kHz		1.5		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
CS	Channel Separation	$\mathrm{P}=5 \mathrm{MHz}$		55		dB
1. For $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}_{\text {PP. }}$. Full power bandwidth is based on slew rate measurement using: $\mathrm{FPBW}=\mathrm{SR} /\left(2 \mathrm{pi} * \mathrm{~V}_{\text {peak }}\right)$ 2. Video performance measured at $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2$ with 2 times normal video level across $\mathrm{R}_{\mathrm{L}}=150 \Omega$						

EL2210C/11C, EL2310C/11C, EL2410C/11C Low Cost, Dual, Triple and Quad Video Op Amps

EL2211C, EL2311C, EL2411C - Closed-Loop AC Characteristics
$\mathbf{V}_{\mathrm{S}}= \pm \mathbf{V} \mathrm{V}, \mathrm{AC}$ Test Figure 1, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.

Parameter	Description	Conditions	Min	Typ	Max	Unit
BW	-3 dB Bandwidth ($\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}_{\mathrm{PP}}$)	$\mathrm{A}_{\mathrm{V}}=+2$		100		MHz
BW	$\pm 0.1 \mathrm{~dB}$ Bandwidth ($\mathrm{V}_{\text {OUT }}=0.4 \mathrm{~V}_{\mathrm{PP}}$)	$\mathrm{A}_{\mathrm{V}}=+2$		8		MHz
GBWP	Gain Bandwidth Product			130		MHz
PM	Phase Margin			60		${ }^{\circ} \mathrm{C}$
SR	Slew Rate		100	140		$\mathrm{V} / \mu \mathrm{s}$
FBWP	Full Power Bandwidth ${ }^{[1]}$		8	11		MHz
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Rise Time, Fall Time	0.1V Step		2.5		ns
OS	Overshoot	0.1V Step		6		\%
$\mathrm{t}_{\text {PD }}$	Propagation Delay			3.5		ns
ts	Settling to 0.1\% ($\mathrm{AV}_{\mathrm{V}}=1$)	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, 2 \mathrm{~V}$ Step		80		ns
d_{G}	Differential Gain ${ }^{[2]}$	NTSC/PAL		0.04		\%
d_{P}	Differential Phase ${ }^{[2]}$	NTSC/PAL		0.15		${ }^{\circ} \mathrm{C}$
e_{N}	Input Noise Voltage	10 kHz		15		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{N}	Input Noise Current	10 kHz		1.5		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
CS	Channel Separation	$\mathrm{P}=5 \mathrm{MHz}$		55		dB

1. For $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}$ Pp. Full power bandwidth is based on slew rate measurement using: $\mathrm{FPBW}=\mathrm{SR} /\left(2 \mathrm{pi} * \mathrm{~V}_{\text {peak }}\right)$
2. Video performance measured at $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2$ with 2 times normal video level across $\mathrm{R}_{\mathrm{L}}=150 \Omega$.

Typical Performance Curves

EL2210C/11C, EL2310C/11C, EL2410C/11C

 Low Cost, Dual, Triple and Quad Video Op Amps
Application Information

Product Description

The EL2210C, EL2310C, and EL2410C are dual, triple, and quad operational amplifiers stable at a gain of 1 . The EL2211C, EL2311C, and EL2411C are dual, triple, and quad operational amplifiers stable at a gain of 2. All six are built on Elantec's proprietary complimentary process and share the same voltage mode feedback topology. This topology allows them to be used in a variety of applications where current mode feedback amplifiers are not appropriate because of restrictions placed on the feedback elements. These products are especially designed for applications where high bandwidth and good video performance characteristics are desired but the higher cost of more flexible and sophisticated products are prohibitive.

Power Supplies

These amplifiers are designed to work at a supply voltage difference of 10 V to 12 V . These amplifiers will work on any combination of \pm supplies. All electrical characteristics are measured with $\pm 5 \mathrm{~V}$ supplies. Below 9 V total supply voltage the amplifiers' performance will degrade dramatically. The quiescent current is a direct function of total supply voltage. With a total supply voltage of 12 V the quiescent supply current will increase from a typical 6.8 mA per amplifier to 10 mA per amplifier.

Output Swing vs Load

Please refer to the simplified block diagram. These amplifiers provide an NPN pull-up transistor output and a passive 1250Ω pull-down resistor to the most negative supply. In an application where the load is connected to V_{S} - the output voltage can swing to within 200 mV of $\mathrm{V}_{\mathrm{S}^{-}}$. In split supply applications where the DC load is connected to ground the negative swing is limited by the voltage divider formed by the load, the internal 1250Ω resistor and any external pull-down resistor. If R_{L} were 150Ω then it and the 1250Ω internal resistor limit the maximum negative swing to

$$
\mathrm{V}_{\mathrm{EE}}=\frac{150}{1250+150}
$$

Or -0.53 V

The negative swing can be increased by adding an external resistor of appropriate value from the output to the negative supply. The simplified block diagram shows an 820Ω external pull-down resistor. This resistor is in parallel with the internal 1250Ω resistor. This will increase the negative swing to

$$
\mathrm{V}_{\mathrm{EE}}=150 \div \frac{1250 \times 820}{1250+820}+150
$$

Or -1.16 V

Power Dissipation and Loading

Without any load and a 10 V supply difference the power dissipation is 70 mW per amplifier. At 12 V supply difference this increases to 105 mW per amplifier. At 12 V this translates to a junction temperature rise above ambient of $33^{\circ} \mathrm{C}$ for the dual and $40^{\circ} \mathrm{C}$ for the quad amplifier. When the amplifiers provide load current the power dissipation can rapidly rise.
In $\pm 5 \mathrm{~V}$ operation each output can drive a grounded 150Ω load to more than 2 V . This operating condition will not exceed the maximum junction temperature limit as long as the ambient temperature is below $85^{\circ} \mathrm{C}$, the device is soldered in place, and the extra pull-down resistor is 820Ω or more.
If the load is connected to the most negative voltage (ground in single supply operation) you can easily exceed the absolute maximum die temperature. For example the maximum die temperature should be $150^{\circ} \mathrm{C}$. At a maximum expected ambient temperature of $85^{\circ} \mathrm{C}$, the total allowable power dissipation for the SO8 package would be:

$$
\mathrm{P}_{\mathrm{D}}=\frac{150-85}{160^{\circ} \mathrm{C} / \mathrm{W}}=361 \mathrm{~mW}
$$

At 12 V total supply voltage each amplifier draws a maximum of 10 mA and dissipates $12 \mathrm{~V} * 10 \mathrm{~mA}=120 \mathrm{~mW}$ or 240 mW for the dual amplifier. Which leaves 121 mW of increased power due to the load. If the load were 150Ω connected to the most negative voltage and the maximum voltage out were $\mathrm{V}_{\mathrm{S}^{-}}+1 \mathrm{~V}$ the load current would be 6.67 mA . Then an extra $146 \mathrm{~mW}((12 \mathrm{~V}-1 \mathrm{~V}) *$ $6.67 \mathrm{~mA} * 2)$ would be dissipated in the EL2210C or

EL2210C/11C, EL2310C/11C, EL2410C/11C

Low Cost, Dual, Triple and Quad Video Op Amps

EL2211C. The total dual amplifier power dissipation would be $146 \mathrm{~mW}+240 \mathrm{~mW}=386 \mathrm{~mW}$, more than the maximum 361 mW allowed. If the total supply difference were reduced to 10 V , the same calculations would yield 200 mW quiescent power dissipation and 120 mW due to loading. This results in a die temperature of $143^{\circ} \mathrm{C}\left(85^{\circ} \mathrm{C}+58^{\circ} \mathrm{C}\right)$.
In the above example, if the supplies were split $\pm 6 \mathrm{~V}$ and the 150Ω loads were connected to ground, the load induced power dissipation would drop to 66.7 mW $(6.67 \mathrm{~mA} *(6-1) * 2)$ and the die temperature would be below the rated maximum.

Video Performance

Following industry standard practices (see EL2044C applications section) these six devices exhibit good differential gain (dG) and good differential phase (dP) with $\pm 5 \mathrm{~V}$ supplies and an external 820Ω resistor to the negative supply, in a gain of 2 configuration. Driving 75Ω back terminated cables to standard video levels $(1.428 \mathrm{~V}$ at the amplifier) the EL2210C, EL2310C, and EL2410C have dG of 0.1% and dP of 0.2°. The EL2211C, EL2311C, and EL2411C have dG of 0.04% and dP of 0.15°.
Due to the negative swing limitations described above, inverted video at a gain of 2 is just not practical. If swings below ground are required then changing the extra 820Ω resistor to 500Ω will allow reasonable dG and dP to approximately -0.75 mV . The EL2211C, EL2311C, and EL2411C will achieve approximately $0.1 \% / 0.4^{\circ}$ between 0 V and -0.75 V . Beyond -0.75 V dG and dP get worse by orders of magnitude.
Differential gain and differential phase are fairly constant for all loads above 150Ω. Differential phase performance will improve by a factor of 3 if the supply voltage is increased to $\pm 6 \mathrm{~V}$.

Output Drive Capability

None of these devices have short circuit protection. Each output is capable of more than 100 mA into a shorted output. Care must be used in the design to limit the output current with a series resistor.

Printed-Circuit Layout

The EL2210C/EL2211C/EL2310C/EL2311C/ EL2410C/EL2411C are well behaved, and easy to apply in most applications. However, a few simple techniques will help assure rapid, high quality results. As with any high-frequency device, good PCB layout is necessary for optimum performance. Ground-plane construction is highly recommended, as is good power supply bypassing. A $0.1 \mu \mathrm{~F}$ ceramic capacitor is recommended for bypassing both supplies. Lead lengths should be as short as possible, and bypass capacitors should be as close to the device pins as possible. For good AC performance, parasitic capacitances should be kept to a minimum at both inputs and at the output. Resistor values should be kept under $5 \mathrm{k} \Omega$ because of the RC time constants associated with the parasitic capacitance. Metal-film and carbon resistors are both acceptable, use of wire-wound resistors is not recommended because of their parasitic inductance. Similarly, capacitors should be low-inductance for best performance.

EL2210C/11C, EL2310C/11C, EL2410C/11C Low Cost, Dual, Triple and Quad Video Op Amps
EL2210/EL2310/EL2410 Macromodel * Revision A, June 1994 * Application Hints: * A pull down resistor between the output and V - is recommended * to allow output voltages to swing close to V-. See datasheet * for recommended values. * Connections: +In * -In * ** $\mathrm{V}+$ $*$ \mid $*$ V- * .subckt EL2210/EL q1 20324 qp q2 21225 qp q3 101026 qp q4 121011 qp q5 141013 qp q6 191920 qn q7 141921 qn q8 81415 qn q9 81617 qn 10 r1 2412350 r2 1225350 r3 826250 r4 811150 r5 813240 r6 204150 r7 214150 r8 1517700 r9 141250 r10 151640 r11 17115 r12 1019 10K r13 142220 c1 2240.45 pF c2 22191 pF d1 114 dcap .model qn $\mathrm{npn}(\mathrm{bf}=150 \mathrm{tf}=0.05 \mathrm{nS})$.model qp pnp(bf=90 tf=0.05nS) .model dcap d(rs=200 cjo=le-12 vj=0.8 tt=100e-9) .ends

EL2211/EL2311/EL2411 Macromodel

* Revision A, June 1994
* Application Hints:
* A pull down resistor between the output and V - is recommended
* to allow output voltages to swing close to V-. See datasheet
* for recommended values.
* Connection
*

$*$
$*$
$*$
$*$
. subckt EL2
q1 20324 q
q2 21225 q
q3 101026 q4 121011 qp q5 141013 qp q6 191920 qn q7 141921 qn q8 81415 qn q9 81617 qn 10 rl 2412175 r2 1225175 r3 826250
r4 811150
r5 813240
r6 204150
r7 214150
r8 1517700
r9 141250
r10 151640
r11 17115
r12 101910 K
r13 142220
cl 2240.42 pF
c2 22191 pF
d1 114 dcap
.model qn $\mathrm{npn}(\mathrm{bf}=150 \mathrm{tf}=0.05 \mathrm{nS})$
model qp pnp(bf $=90 \mathrm{tf}=0.05 \mathrm{nS})$
.model dcap $d(r s=200 \mathrm{cjo}=\mathrm{le}-12 \mathrm{vj}=0.8 \mathrm{tt}=100 \mathrm{e}-9)$
.ends

EL2210C/11C, EL2310C/11C, EL2410C/11C
 EL2210C/11C, EL2310C/11C, EL2410C/11C
 Low Cost, Dual, Triple and Quad Video Op Amps
 General Disclaimer
 Specifications contained in this data sheet are in effect as of the publication date shown. Elantec, Inc. reserves the right to make changes in the circuitry or specifications contained herein at any time without notice. Elantec, Inc. assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

Elantec Semiconductor, Inc.
675 Trade Zone Blvd.
Milpitas, CA 95035
Telephone: (408) 945-1323
(888) ELANTEC
$\begin{array}{ll}\text { Fax: } & \text { (408) 945-9305 } \\ \text { European Office: }+44-118-977-6020\end{array}$
Japan Technical Center: +81-45-682-5820

WARNING - Life Support Policy

Elantec, Inc. products are not authorized for and should not be used within Life Support Systems without the specific written consent of Elantec, Inc. Life Support systems are equipment intended to support or sustain life and whose failure to perform when properly used in accordance with instructions provided can be reasonably expected to result in significant personal injury or death. Users contemplating application of Elantec, Inc. Products in Life Support Systems are requested to contact Elantec, Inc. factory headquarters to establish suitable terms \& conditions for these applications. Elantec, Inc.'s warranty is limited to replacement of defective components and does not cover injury to persons or property or other consequential damages.

[^0]: 2001 Elantec Semiconductor, Inc.

