SHANGHAI SUNRISE ELECTRONICS CO., LTD. ES1A THRU ES1G SURFACE MOUNT SUPER FAST SWITCHING RECTIFIER

TECHNICAL SPECIFICATION

VOLTAGE: 50 TO 400V CURRENT: 1.0A

FEATURES

- Ideal for surface mount pick and place application
- Low profile package
- Built-in strain relief
- High surge capability
- Glass passivated chip
- Super fast recovery for high efficiency
- High temperature soldering guaranteed:
$260^{\circ} \mathrm{C} / 10 \mathrm{sec} /$ at terminal

MECHANICAL DATA

- Terminal: Plated leads solderable per MIL-STD 202E, method 208C
- Case: Molded with UL-94 Class V-O recognized flame retardant epoxy
- Polarity: Color band denotes cathode

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS
(Single-phase, half-wave, 60 Hz , resistive or inductive load rating at $25^{\circ} \mathrm{C}$, unless otherwise stated, for capacitive load, derate current by 20\%)

RATINGS	SYMBOL	ES1A	ES1B	ES1C	ES1D	ES1E	ES1G	UNITS
Maximum Repetitive Peak Reverse Voltage	$\mathrm{V}_{\text {RRM }}$	50	100	150	200	300	400	V
Maximum RMS Voltage	$\mathrm{V}_{\text {RMS }}$	35	70	105	140	210	280	V
Maximum DC Blocking Voltage	$V_{D C}$	50	100	150	200	300	400	V
Maximum Average Forward Rectified Current $\left(\mathrm{T}_{\mathrm{L}}=110^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\text {f(AV) }}$	1.0						A
Peak Forward Surge Current (8.3ms single half sine-wave superimposed on rated load)	$\mathrm{I}_{\text {FSM }}$	30						A
Maximum Instantaneous Forward Voltage (at rated forward current)	$V_{\text {F }}$	0.95			1.25			V
Maximum DC Reverse Current $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (at rated DC blocking voltage) $\mathrm{T}_{\mathrm{a}}=100^{\circ} \mathrm{C}$	$I_{\text {R }}$	$\begin{aligned} & 5.0 \\ & 200 \\ & \hline \end{aligned}$						$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
Maximum Reverse Recovery Time (Note 1)	trr	35						nS
Typical Junction Capacitance (Note 2)	C_{J}	10						pF
Typical Thermal Resistance (Note 3)	$\mathrm{R}_{8}(\mathrm{ja})$	40						${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage and Operation Junction Temperature	$\mathrm{T}_{\text {STG }}, \mathrm{T}_{\mathrm{J}}$	-50 to +150						${ }^{\circ} \mathrm{C}$
Note: 1. Reverse recovery condition $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=1.0 \mathrm{~A}, \mathrm{Irr}=0.25 \mathrm{~A}$. 2. Measured at 1.0 MHz and applied voltage of $4.0 \mathrm{~V}_{\mathrm{dc}}$ 3.Thermal resistance from junction to terminal mounted on $5 \times 5 \mathrm{~mm}$ copper pad area								

