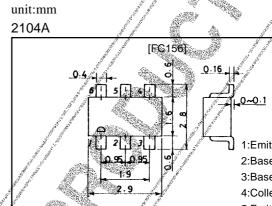


NPN Epitaxial Planar Silicon Composite Transistor High-Frequency Low-Noise Amp, Differential Amp Applications


Features

- Composite type with 2 transistors contained in the CP package currently in use, improving the mounting efficiency greatly.
- The FC156 is formed with two chips, being equivalent to the 2SC5226, placed in one package.
- Excellent in thermal equilibrium and in inter-chip characteristics matching.

Electrical Connection

Package Dimensions

1:Emitter 1 2:Base 1 3:Base 2 4:Collector 2 5:Emitter 2 6:Collector 1

FC156

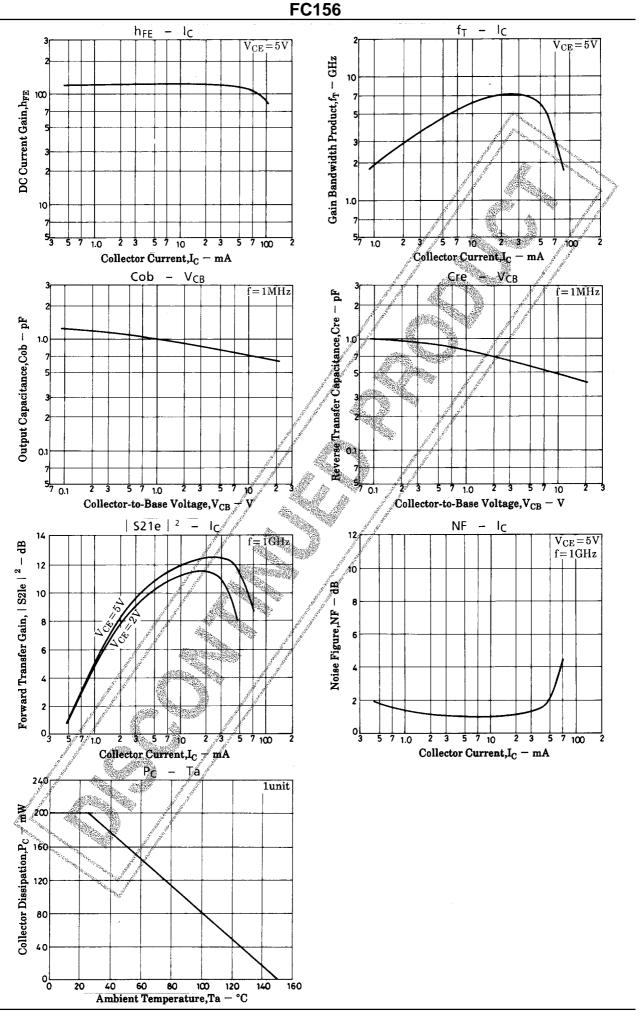
SANYO:CP6

Specifications

Absolute Maximum Ratings at Ta = 25 C

Parameter		Symbol	Conditions	Ratings	Unit
Collector-to-Base Voltage		🖉 сво 🔬		20	V
Collector-to-Emitter Voltage	a bar	VCEO		10	V
Emitter-to-Base Voltage	J. L	VEBO		2	V
Collector Current	and the second second	10	No. 77	70	mA
Collector Dissipation	State State	PC	Lunit state	200	mW
Total Dissipation	and the second s	Pr Pr		300	mW
Junction Temperature		Tj		150	°C
Storage Temperature	(<u>) ango</u>	Tstg	and the second	-55 to +150	°C

and the second second

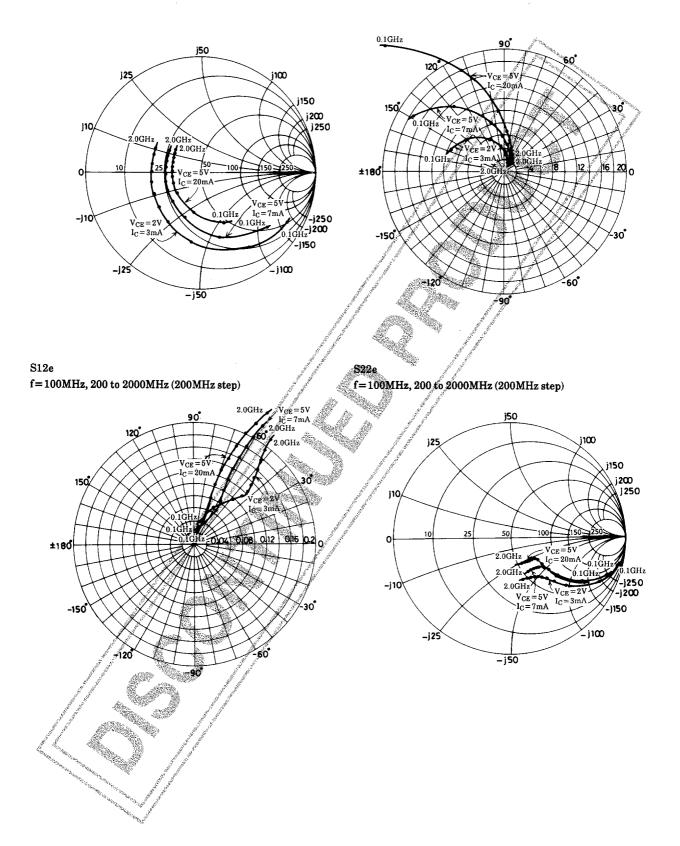

Electrical Characteristics at Ta = 25°C

Parameter	Symbol	Conditons		Ratings			
A Starten S		Conditions	min	typ	max	Unit	
Collector Cutoff Current	ICBO	V _{CB} =10V, I _E =0			1.0	μA	
Emitter Cutoff Current	^{∕1} EBO	V _{EB} =1V, I _C =0			10	μΑ	
DC Current Gain	/ h _{FE}	V _{CE} =5V, I _C =20mA	90		200		
DC Current Gain Ratio	h _{FE} (small/ large)	V _{CE} =5V, I _C =20mA	0.7	0.95			
Base-to-Emitter Voltage Difference	V _{BE} (large- small)	V _{CE} =5V, I _C =20mA		1.0		mV	
Gain-Bandwidth Product	fT	V _{CE} =5V, I _C =20mA	5	7		GHz	
Output Capacitance	Cob	V _{CB} =10V, f=1MHz		0.75	1.2	pF	
Reverse Transfer Capacitance	Cre	V _{CB} =10V, f=1MHz		0.5		pF	
Forward Transfer Gain	S2le ²	V _{CE} =5V, I _C =20mA, f=1GHz	9	12		dB	
	S2le 2	V _{CE} =2V, I _C =3mA, f=1GHz		8		dB	
Noise Figure	NF	V _{CE} =5V, I _C =7mA, f=1GHz		1.0	1.8	dB	

Note: The specifications shown above are for each individual transistor.

Marking:156

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquaters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN



S Parameters

S11e

f = 100 MHz, 200 to 2000MHz (200MHz step)

S21e f=100MHz, 200 to 2000MHz (200MHz step)

S Parameters (Common emitter)

$V_{CE} = 5V$	$I_{c} = 7 m A$	$, Z_{O} = 50\Omega$
ACE-04	, 10 - 7 mz	., 20-0000

CE · , C	, 0							
Freq (MHz)	S ₁₁	∠S ₁₁	$ S_{21} $	$\angle S_{21}$	S ₁₂	$\angle S_{12}$	S ₂₂	$\angle S_{22}$
100	0.722	-41.6	17.352	148.7	0.029	70.9	0.883	-21.3
200	0.587	-73.2	13.419	127.6	0.046	60.8	0.710	-33.1
400	0.426	-113.0	8.371	105.1	0.067	56.9	0,507	-40.7
600	0.369	-136.6	5.914	92.7	0.084	58.4	0.423	-42.5
800	0.344	-152.9	4.593	83.9	0.102	60.3	0.382	-43.9
1000	0.334	-165.7	3.750	76.7	0.121	61.5	0.360	-46.3
1200	0.326	-177.9	3.178	70.3	0.141	62.0	0.350	-49,1
1400	0.324	172.3	2.784	64.9	0.162	61.8	0.341	-52.2
1600	0.328	163.4	2.476	59.5	0.183	61,2	0.334	√ →56.4
1800	0.335	154.5	2.246	54.6	0.204	60,5	0.328 💉	-60.8
2000	0.346	147.5	3.073	50.0	0.226	59.6	0.328	-65.4
$V_{CE} = 5V, I_C = 2$	0mA, Z _O =50	Ω					and a start of the	
· · · ·	r · · · · ·	r	1	1	1 2 2 2 2	10.00		

Freq (MHz)	S ₁₁	$\angle S_{11}$	S ₂₁	∠S ₂₁	S ₁₂	∠\$ ₁₂	∫∫S ₂₂	$\angle S_{22}$
100	0.477	-66.8	28.090	133.6	0.022	67.7 🧹	0.726	-32.7
200	0.358	-104.1	17.995	112.9	0.035	65.3	0.506	-41.6
400	0.288	-142.2	9.903	95.9	0.057	68.3	0.350	-42.4
600	0.273	-159.8	6.777	86.7	0.081	69.9	0.299	-41.8
800	0.270	-171.7	5.181	79.9	0.104	70.2	0.278	-43.2
1000	0.271	178.7	4.209	73.9	0.129	69.1	0.269	-45.9
1200	0.273	169.4	3.554	68.5	0,153	67.9	0.264	-49.6
1400	0.275	161.1	3.085	63.6	0,177	66.2	0.258	-53.3
1600	0.284	153.4	2.749	59.1	0.202	64.3	0.253	-58.3
1800	0.294	145.6	2,479	54.6	0.224	62.5	0.249	-63.4
2000	0.302	140.8	2.295	50.6	0.248	60.4	0.248	-68.7

See Strange

 $V_{CE}=2V, I_C=3mA, Z_O=50\Omega$

01 70		8		A A				
Freq (MHz)	S ₁₁	$\angle \mathbf{S}_{11}$	$ S_{21} $	$\leq S_{21}$	S ₁₂	$\angle S_{12}$	$ S_{22} $	$\angle S_{22}$
100	0.858	-30.5	9.283	157.3	0.039	73.6	0.944	-15.6
200	0,769	57,4	8.036	138.7	0.068	61.4	0.834	-27.5
400	0.607	-97.1	5.756	113.9	0.099	48.4	0.641	-40.5
600	0.528	-123.2	4.302	98.1	0.114	44.4	0.525	-46.5
800	0.486	-141.6	3.414	87.0	0.125	43.9	0.465	-50.2
1000	0.460	-156.4	2.834	78.0	0.137	45.4	0.429	-53.7
1200	0.453	-169.4	2.429	70.3	0.149	47.5	0.408	-57.3
1400	0.440	179.8	2.143	63.6	0.163	49.2	0.395	-60.9
1600	0.441	170.1	1.919	57.4	0.179	50.8	0.385	-65.4
1800	0.447	160.4	1.739	51.7	0.196	52.3	0.381	-70.1
2000	0,454	152.5	1.621	46.4	0.215	53.3	0.379	-75.2
and the second s								
	dan J							

No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like the failure of which may directly or indirectly cause injury, death or property loss.
Anyone purchasing any products described or contained herein for an above-mentioned use shall:

(I) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:

- ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1998. Specifications and information herein are subject to change without notice.