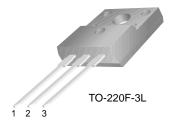
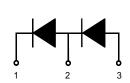


October 2004

FFPF60SA60DS

Features


- Stealth Recovery t_{rr} = 39 ns (@ I_F = 8 A)
- Max Forward Voltage, V_F = 2.4 V (@ T_C = 25°C)
- 600 V Reverse Voltage and High Reliability
- · Avalanche Energy Rated
- RoHS Compliant


Applications

- Switch Mode Power Supplies
- · Hard Swithed PFC Boost Diode
- UPS Free wheeling Diode
- Motor Drive FWD
- SMPS FWD
- Snubber Diode

6 A, 600 V, STEALTH™ Dual Diode

The FFPF60SA60DS is STEALTH™ dual diode with soft recovery characteristics. It is silicon nitride passivated ion-implanted epitaxial planar construction. This device is intended for use as freewheeling of boost diode in switching power supplies and other power switching applications. Their low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.

Absolute Maximum Ratings (per leg) T_C=25°C unless otherwise noted

Symbol	Parameter	Value	Unit
V _{RRM}	Peak Repetitive Reverse Voltage	600	V
V _{RWM}	Working Peak Reverse Voltage	600	V
V _R	DC Blocking Voltage	600	V
I _{F(AV)}	Average Rectified Forward Current @ T _C = 95 °C	8	Α
I _{FSM}	Non-repetitive Peak Surge Current 60Hz Single Half-Sine Wave	80	А
P _D	Power Dissipation	26	W
W _{AVL}	Avalanche Energy (1A, 40mH)	20	mJ
T _{J,} T _{STG}	Operating Junction and Storage Temperature	- 65 to +150	°C

Thermal Characteristics

Symbol	Parameter	Value	Unit	
$R_{\theta JC}$	Maximum Thermal Resistance, Junction to Case	3.125	°C/W	
$R_{\theta JA}$	Maximum Thermal Resistance, Junction to Ambient	62.5	°C/W	

Symbol	Parameter		Min.	Тур.	Max.	Unit V
V _F *	Forward Voltage					
	I _F = 8 A	T _C = 25 °C	-	2.0	2.4	
	I _F = 8 A	$T_C = 25 ^{\circ}C$ $T_C = 125 ^{\circ}C$	-	1.6	2.0	
I _R *	Reverse Current					μΑ
	@ rated V _R	T _C = 25 °C	-	-	100	
		$T_C = 25$ °C $T_C = 125$ °C	-	-	1000	
t _{rr}	Maximum Reverse Recovery Time		-	-	25	ns
	$(I_F = 1 \text{ A, di/dt} = 100 \text{ A/}\mu\text{s, V}_R = 30 \text{ V})$					
t _{rr}	Maximum Reverse Recovery Time (I _F = 8		-	-	30	ns
	A, $di/dt = 100 \text{ A/}\mu\text{s}$, $V_R = 30 \text{ V}$					
trr	Reverse Recovery Time	•	-	39	-	ns
ı _{rr}	Reverse Recovery Current Reverse		-	2	-	Α
Ö _{rr}	Recovery Charge		-	39	-	nC
	$(I_F = 8 \text{ A}, \text{ di/dt} = 200 \text{ A/}\mu\text{s}, V_R = 390 \text{ V})$					

^{*}Pulse Test: Pulse Width=300 μs, Duty Cycle=2%

Typical Characteristics

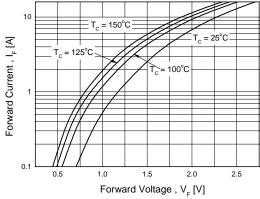


Figure 1. Typical Forward Voltage Drop vs. Forward Current

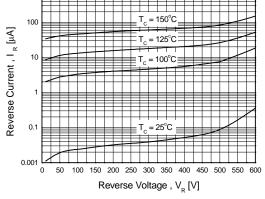


Figure 2. Typical Reverse Current vs. Reverse Voltage

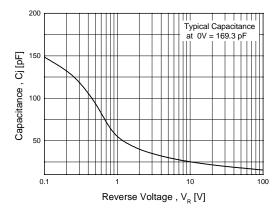


Figure 3. Typical Junction Capacitance

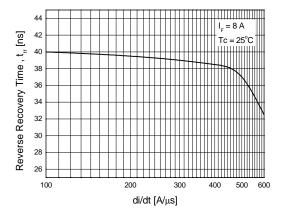


Figure 4. Typical Reverse Recovery Time vs. di/dt

Typical Characteristics (Continued)

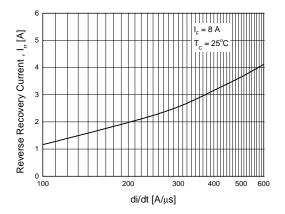


Figure 5. Typical Reverse Recovery Current vs. di/dt

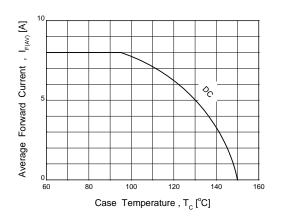


Figure 6. Forward Curent Derating Curve

Test Circuits and Waveforms

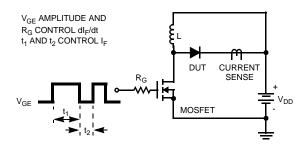


Figure 7. t_{rr} Test Circuit

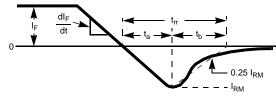


Figure 8. t_{rr} Waveforms and Definitions

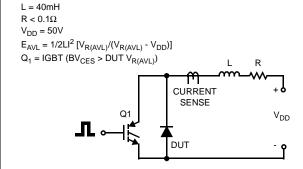


Figure 9. Avalanche Energy Test Circuit

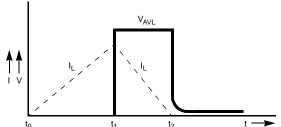
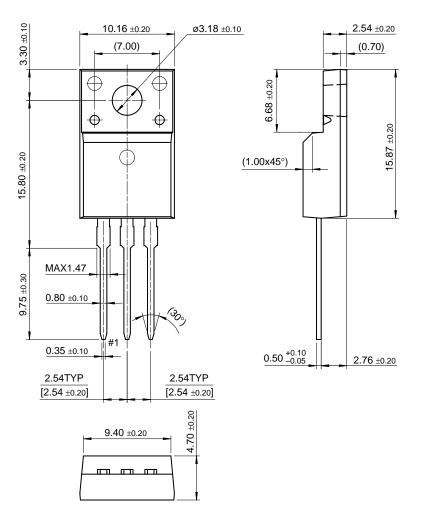



Figure 10. Avalanche Current and Voltage Waveforms

I = 1A

Package Dimensions

TO-220F

Dimensions in Millimeters

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ FPS™ AccuPower™ AX-CAP®* F-PFS™ FRFET® Global Power Resource BitSiC™ GreenBridge™ Build it Now™ Green FPS™ CorePLUS™ CorePOWER™ Green FPS™ e-Series™ CROSSVOLT™ $\mathbf{G} \mathbf{m} \mathbf{a} \mathbf{x}^{\mathsf{TM}}$ GTO™ **CTL**™ IntelliMAX™ Current Transfer Logic™ DEUXPEED[®] ISOPLANAR™ Making Small Speakers Sound Louder

Dual Cool™ EcoSPARK[®] EfficientMax™ ESBC™

F® Fairchild®

Fairchild Semiconductor® FACT Quiet Series™ FACT® FastvCore™ FETBench™

PowerTrench® PowerXS™ Programmable Active Droop™ **QFET** OS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™

SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™

SPM® STEAL TH™ SuperFET® SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

Sync-Lock™ SYSTEM GENERAL® TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC™ TriFault Detect™ TRUECURRENT® uSerDes™

Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™

and Better[⊤]

MICROCOUPLER™

MegaBuck⊺

MicroFET™

MicroPak™

MicroPak2™

MillerDrive™

MotionMax™

OptoHiT™ OPTOLOGIC®

OPTOPLANAR®

mWSaver™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 164

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.