April 2001 Revised September 2001

FIN1019 3.3V LVDS High Speed Differential Driver/Receiver

General Description

FAIRCHILD

SEMICONDUCTOR

This driver and receiver pair are designed for high speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The driver translates LVTTL signals to LVDS levels with a typical differential output swing of 350mV and the receiver translates LVDS signals, with a typical differential input threshold of 100mV, into LVTTL levels. LVDS technology provides low EMI at ultra low power dissipation even at high frequencies. This device is ideal for high speed clock or data transfer.

Features

- Greater than 400Mbs data rate
- 3.3V power supply operation
- 0.5ns maximum differential pulse skew
- 2.5ns maximum propagation delay
- Low power dissipation
- Power-Off protection
- 100mV receiver input sensitivity
- Fail safe protection open-circuit, shorted and terminated conditions
- Meets or exceeds the TIA/EIA-644 LVDS standard
- Flow-through pinout simplifies PCB layout
- 14-Lead SOIC and TSSOP packages save space

Ordering Code:

Order Number	Package Number	Package Description		
FIN1019M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow		
FIN1019MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide		
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.				

Function Table

Inputs				Out	puts
R _{IN+}	R	N-	RE	Rc	UT
L	F	1	L	l	_
Н	L		L	ł	1
Х	Х	(Н	2	<u>Z</u>
Fail Safe	Conditi	on	L	ŀ	1
D _{IN}			DE	D _{OUT+}	D _{OUT-}
L			Н	L	Н
Н		Н		Н	L
Х			L	Z	Z
Open–Circuit or Z			Н	L	Н
H = HIGH Logic Level Z = High Impedance			LOW Logic Le Safe = Open, :		Don't Care inated

Connection Diagram

Pin Descriptions

Pin Name	Description
D _{IN}	LVTTL Data Input
D _{OUT+}	Non-inverting LVDS Output
D _{OUT-}	Inverting LVDS Output
DE	Driver Enable (LVTTL, Active HIGH)
R _{IN+}	Non-Inverting LVDS Input
R _{IN-}	Inverting LVDS Input
R _{OUT}	LVTTL Receiver Output
RE	Receiver Enable (LVTTL, Active LOW)
V _{CC}	Power Supply
GND	Ground
NC	No Connect

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
	-0.50 10 +4.00
LVTTL DC Input Voltage (D _{IN} , DE, RE)	-0.5V to +6V
LVDS DC Input Voltage (R _{IN+} , R _{IN-})	-0.5V to 4.7V
LVTTL DC Output Voltage (R _{OUT})	-0.5V to +6V
LVDS DC Output Voltage (D _{OUT+} , D _{OUT-})	-0.5V to 4.7V
LVDS Driver Short Circuit Current (I _{OSD})	Continuous
LVTTL DC Output Current (I _O)	16 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Max Junction Temperature (T _J)	150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
ESD (Human Body Model)	≥ 6500V
ESD (Machine Model)	≥ 300V

Recommended Operating Conditions

Supply Voltage (V _{CC})	3.0V to 3.6V
Input Voltage (V _{IN})	0 to V_{CC}
Magnitude of Differential Voltage	
(V _{ID})	100 mV to $V_{\mbox{\scriptsize CC}}$
Common-Mode Input Voltage (VIC)	0.05V to 2.35V
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

DC Electrical Characteristics

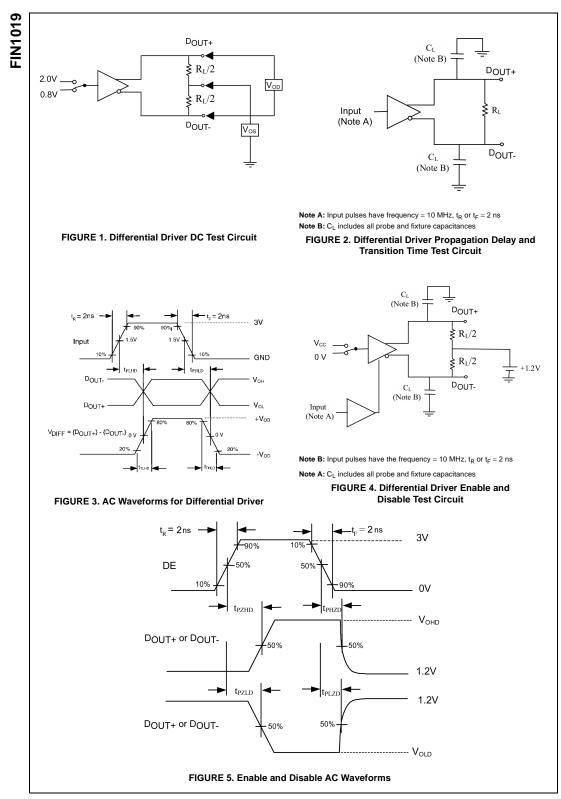
Over supply voltage and operating temperature ranges, unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Typ (Note 2)	Max	Units
LVDS Diffe	rential Driver Characteristics			1 1		<u> </u>
V _{OD}	Output Differential Voltage		250	350	450	mV
ΔV_{OD}	V _{OD} Magnitude Change from	7			25	mV
	Differential LOW-to-HIGH	$R_L = 100\Omega$, See Figure 1			25	IIIV
V _{OS}	Offset Voltage	7	1.125	1.25	1.375	V
ΔV_{OS}	Offset Magnitude Change from				25	mV
	Differential LOW-to-HIGH				25	IIIV
I _{OZD}	Disabled Output Leakage Current	$V_{OUT} = V_{CC}$ or GND, DE = 0V			±20	μA
I _{OFF}	Power Off Output Current	$V_{CC} = 0V$, $V_{OUT} = 0V$ or 3.6V			±20	μA
l _{os}	Short Circuit Output Current	$V_{OUT} = 0V, DE = V_{CC}$			-8	mA
		$V_{OD} = 0V, DE = V_{CC}$			±8	1117
LVTTL Driv	ver Characteristics					
V _{OH}	Output HIGH Voltage	$I_{OH} = -100 \ \mu A$, $\overline{RE} = 0V$,				
		See Figure 6 and Table 1	V _{CC} -0.2			v
		$I_{OH} = -8 \text{ mA}, \overline{RE} = 0V, V_{ID} = 400 \text{ mV}$				
		$V_{ID} = 400 \text{ mV}, V_{IC} = 1.2 \text{V}$, see Figure 6	2.4			
Vol	Output LOW Voltage	V Voltage $I_{OI} = 100 \mu A, \overline{RE} = 0V, V_{ID} = -400 \text{ mV}$			1	
·OL	Culput LOW Voltage	See Figure 6 and Table 1			0.2	
		$I_{OI} = -8 \text{ mA}, \overline{RE} = 0V, V_{ID} = -400 \text{ mV}$				V
		$V_{ID} = -400 \text{ mV}, V_{IC} = 1.2\text{V}$, see Figure 6			0.5	
	Disabled Order (Lesland Order)				100	
	Disabled Output Leakage Current	$V_{OUT} = V_{CC}$ or GND, $\overline{RE} = V_{CC}$			±20	μA
V _{TH}	Differential Input Threshold HIGH	See Figure 6 and Table 1		г – т	100	mV
VTH V _{TL}	Differential Input Threshold LOW	See Figure 6 and Table 1	-100		100	mV
	Input Current	$V_{IN} = 0V \text{ or } V_{CC}$	-100		±20	μA
	Power-OFF Input Current	$V_{IN} = 0V \text{ of } V_{CC}$ $V_{CC} = 0V, V_{IN} = 0V \text{ or } 3.6V$			±20 ±20	μΑ μΑ
I _{I(OFF)}	ver and Control Signals Characteristi				120	μΛ
VIH	Input HIGH Voltage		2.0		V _{CC}	V
VIH VIL	Input LOW Voltage		GND		0.8	V
IIN	Input Current	$V_{IN} = 0V \text{ or } V_{CC}$	SIND		±20	μA
	Power-OFF Input Current	$V_{IN} = 0V \text{ of } V_{CC}$ $V_{CC} = 0V, V_{IN} = 0V \text{ or } 3.6V$			±20	μΑ
II(OFF)		$v_{\rm CC} = 0.0, v_{\rm IN} = 0.0 013.0 v$			120	μΑ

DC Electrical	Characteristics	(Continued)
---------------	-----------------	-------------

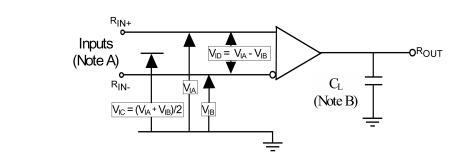
끄	
Z	
_	
Ó	
6	

I _{CC}	Power Supply Current	Driver Enabled, Driver Load: $R_L = 100 \Omega$		12.5	
		Receiver Disabled, No Receiver Load		12.0	mA
		Driver Enabled, Driver Load: $R_L = 100 \Omega$,			
		Receiver Enabled, (R _{IN+} = 1V and R _{IN-} = 1.4V)		12.5	mA
		or $(R_{IN+} = 1.4V \text{ and } R_{OUT-} = 1V)$			
		Driver Disabled, Receiver Enabled,			
		$(R_{IN+} = 1V \text{ and } R_{IN-} = 1.4V) \text{ or}$		7.0	mA
		$(R_{IN+} = 1.4V \text{ and } R_{IN-} = 1V)$			
		Driver Disabled, Receiver Disabled		7.0	mA
C _{IN}	Input Capacitance	Any LVTTL or LVDS Input	4		pF
COUT	Output Capacitance	Any LVTTL or LVDS Output	6		pF


AC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified

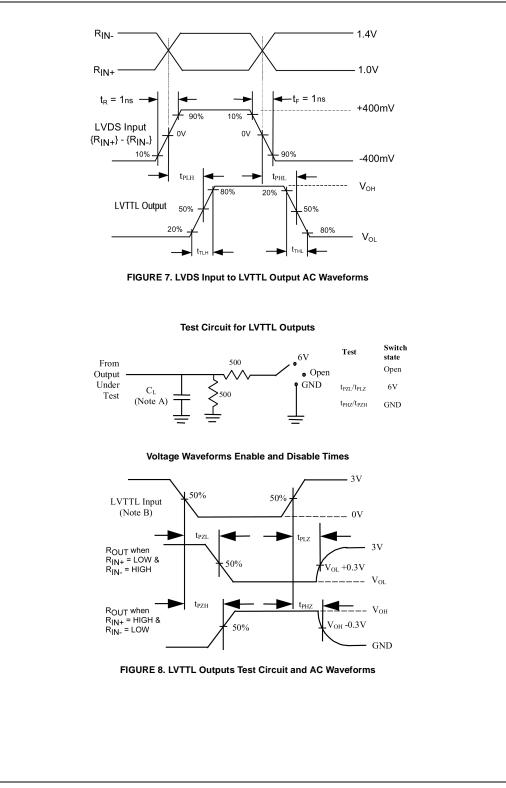
Symbol	Parameter	Test Conditions	Min	Typ (Note 3)	Max	Units
Driver Tim	ing Characteristics					
t _{PLHD}	Differential Propagation Delay		0.5		1.5	ns
	LOW-to-HIGH		0.5		1.5	115
t _{PHLD}	Differential Propagation Delay		0.5		1.5	20
	HIGH-to-LOW	$R_L = 100 \ \Omega, \ C_L = 10 \ pF$,	0.5		1.5	ns
t _{TLHD}	Differential Output Rise Time (20% to 80%)	See Figure 2 and Figure 3	0.4		1.0	ns
t _{THLD}	Differential Output Fall Time (80% to 20%)		0.4		1.0	ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}				0.5	ns
t _{SK(PP)}	Part-to-Part Skew (Note 4)				1.0	ns
t _{ZHD}	Differential Output Enable Time from Z to HIGH	$R_L = 100\Omega$, $C_L = 10 \text{ pF}$,			5.0	ns
t _{ZLD}	Differential Output Enable Time from Z to LOW	See Figure 4 and Figure 5			5.0	ns
t _{HZD}	Differential Output Disable Time from HIGH to Z				5.0	ns
t _{LZD}	Differential Output Disable Time from LOW to Z				5.0	ns
Receiver T	iming Characteristics	•	-			
t _{PLH}	Propagation Delay LOW-to-HIGH		0.9		2.5	ns
t _{PHL}	Propagation Delay HIGH-to-LOW		0.9		2.5	ns
t _{TLH}	Output Rise time (20% to 80%)	$ V_{ID} = 400 \text{ mV}, C_L = 10 \text{ pF},$		0.5		ns
t _{THL}	Output Fall time (80% to 20%)	See Figure 6 and Figure 7		0.5		ns
t _{SK(P)}	Pulse Skew t _{PLH} - t _{PHL}				0.5	ns
t _{SK(PP)}	Part-to-Part Skew (Note 4)				1.0	ns
t _{ZH}	LVTTL Output Enable Time from Z to HIGH				5.0	ns
t _{ZL}	LVTTL Output Enable Time from Z to LOW	$R_L = 500 \ \Omega$, $C_L = 10 \ pF$,		1	5.0	ns
t _{HZ}	LVTTL Output Disable Time from HIGH to Z	See Figure 8			5.0	ns
t _{LZ}	LVTTL Output Disable Time from LOW to Z	1			5.0	ns

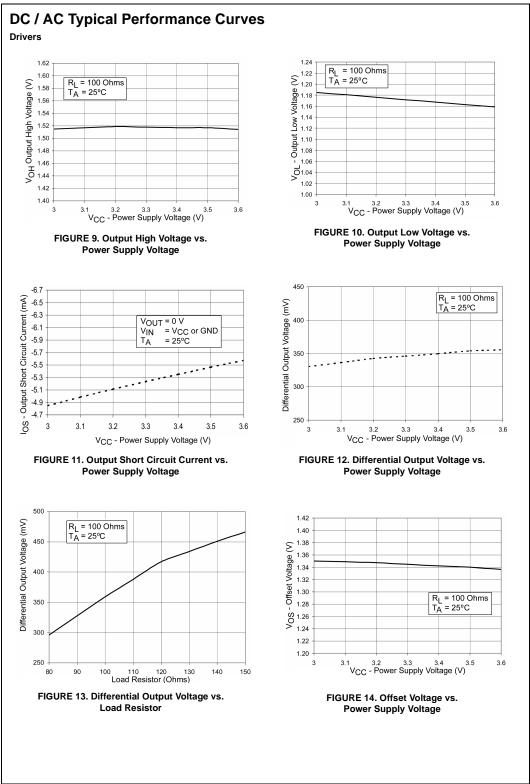

Note 3: All typical values are at $T_A = 25^\circ C$ and with $V_{CC} = 5 V.$

Note 4: t_{SK(PP)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits.

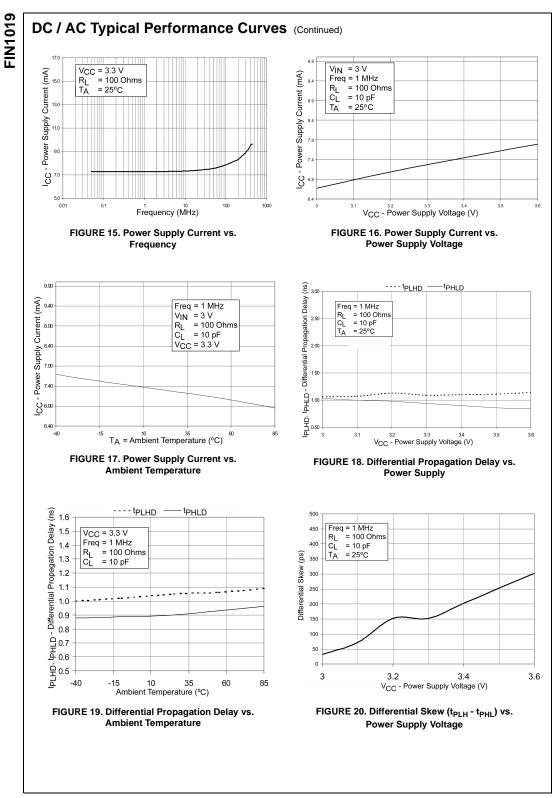
4

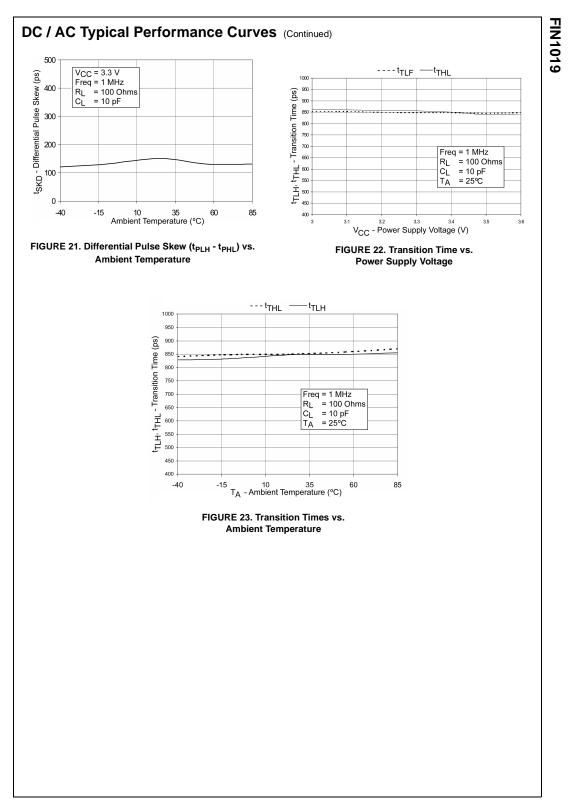
Note A: Input pulses have frequency = 10 MHz, $t_R \mbox{ or } t_F = 1 \mbox{ns}$

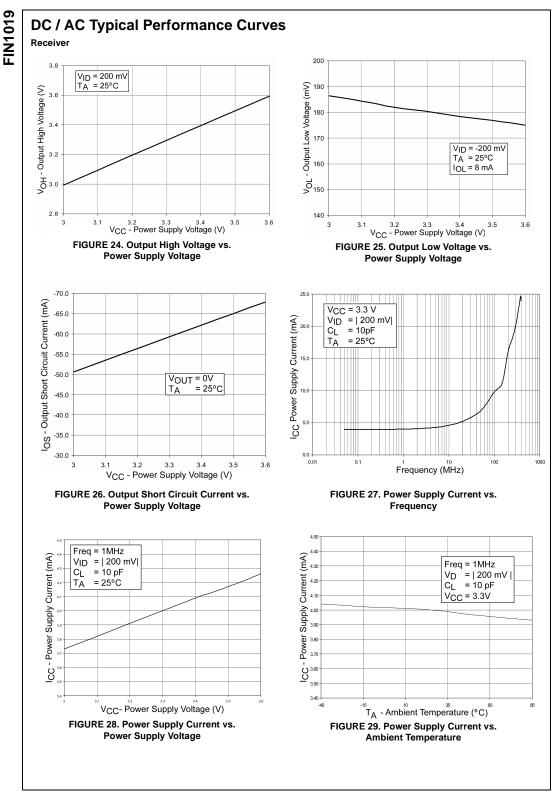

Note B: C_L includes all probe and fixture capacitance


FIGURE 6. Differential Receiver Voltage Definitions and Propagation Delay and Transition Time Test Circuit

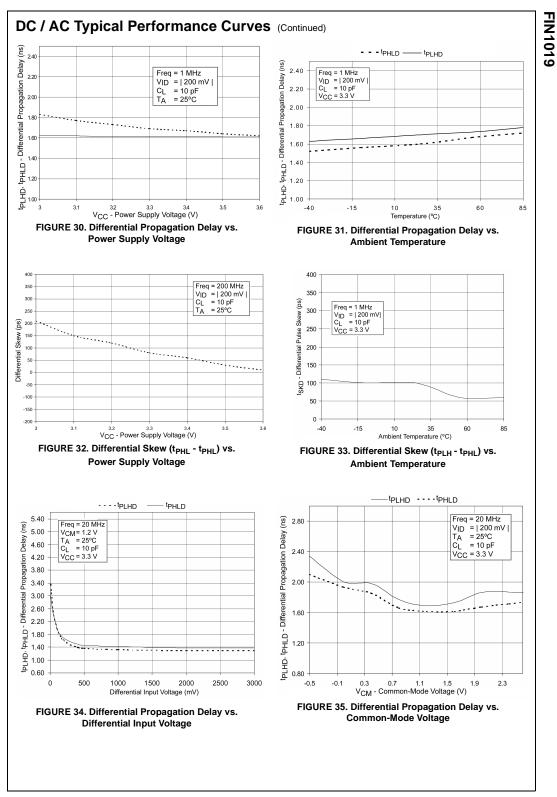
Applied Voltages (V)		Resulting Differential Input Voltage (mV)	Resulting Common Mode Input Voltage (V)		
VIA	VIB	V _{ID}	VIC		
1.25	1.15	100	1.2		
1.15	1.25	-100	1.2		
2.4	2.3	100	2.35		
2.3	2.4	-100	2.35		
0.1	0	100	0.05		
0	0.1	-100	0.05		
1.5	0.9	600	1.2		
0.9	1.5	-600	1.2		
2.4	1.8	600	2.1		
1.8	2.4	-600	2.1		
0.6	0	600	0.3		
0	0.6	-600	0.3		

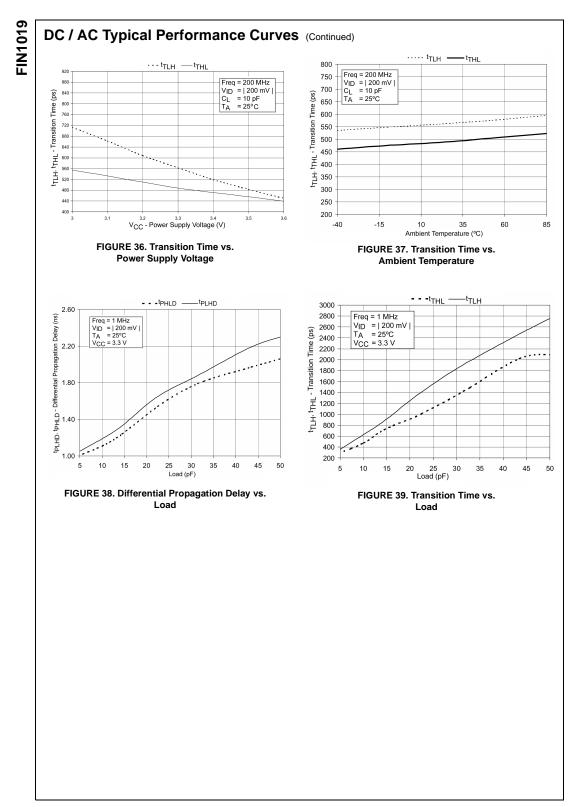

TABLE 1. Receiver Minimum and Maximum Input Threshold Test Voltages

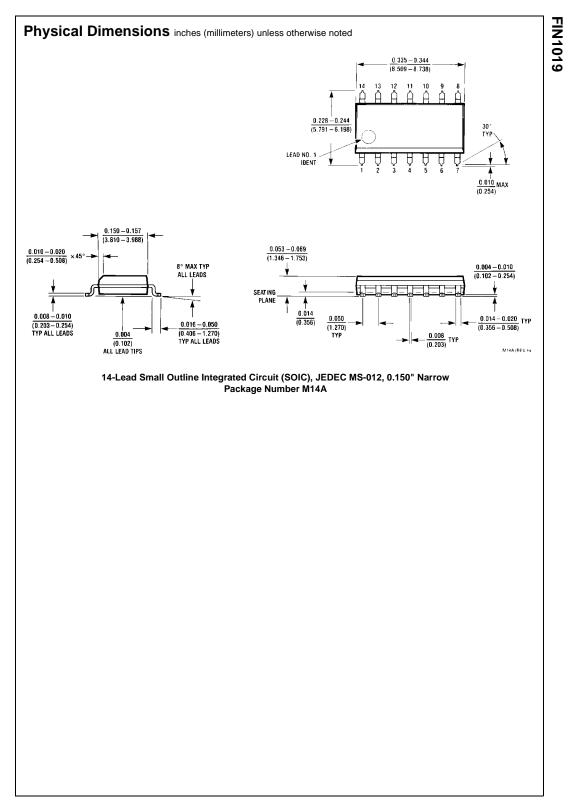


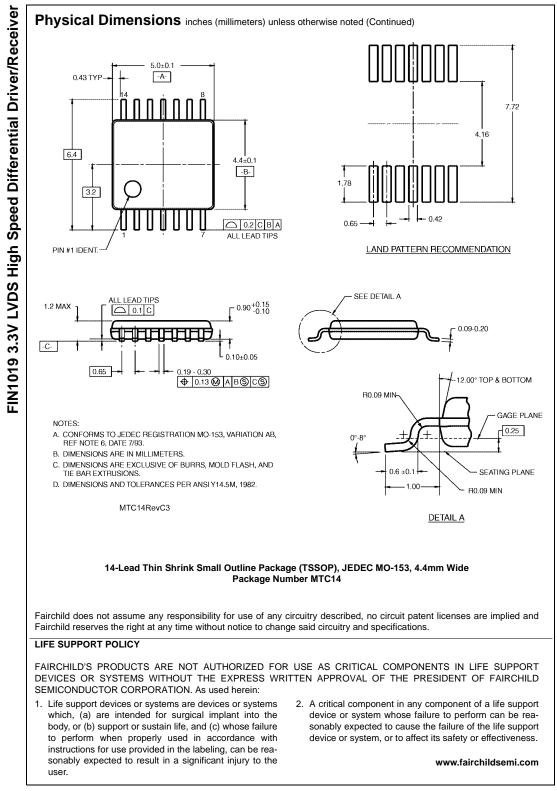


FIN1019




8





10

