### **FIN1049** LVDS Dual Line Driver with Dual Line Receiver

#### **General Description**

#### **Features**

- Greater than 400 Mbps data rate
- 3.3V power supply operation
- Low power dissipation
- Fail safe protection for open-circuit conditions
- Meets or exceeds the TIA/EIA-644-A LVDS standard
- 16-pin TSSOP package saves space
- Flow-through pinout simplifies PCB layout
- Enable/Disable for all outputs
- Industrial operating temperature range:  $-40^{\circ}C$  to  $+85^{\circ}C$

#### **Ordering Code:**

| SEMICONDUC                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          | Revised March 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| LVDS DUAI<br>General Desc<br>This dual Driver-Recei<br>connects utilizing Lo<br>(LVDS) technology. Th<br>translates them to LV<br>LVDS inputs and tran<br>LVDS levels have a<br>350mV which provide<br>pation even at high fre<br>LVPECL inputs for trar<br>En and Enb inputs are<br>the outputs. The enabl<br>single line driver and<br>available in the FIN101 | ription<br>wer is designed<br>by Voltage D<br>be Driver accep<br>DS outputs. The<br>slates them to<br>typical differen<br>for low EMI at u<br>equencies. The<br>baslating from L<br>be ANDed togeth<br>es are common<br>single line rece | for high speed inter-<br>ifferential Signaling<br>ts LVTTL inputs and<br>he Receiver accepts<br>LVTTL outputs. The<br>tial output swing of<br>iltra low power dissi-<br>FIN1049 can accept<br>FIN1049 can accept<br>PECL to LVDS. The<br>her to enable/disable<br>to all four outputs. A | <ul> <li>Dual Line Receiver</li> <li>Dual Line Receiver</li> <li>Features</li> <li>Greater than 400 Mbps data rate</li> <li>3.3V power supply operation</li> <li>Low power dissipation</li> <li>Fail safe protection for open-circuit conditions</li> <li>Meets or exceeds the TIA/EIA-644-A LVDS standard</li> <li>16-pin TSSOP package saves space</li> <li>Flow-through pinout simplifies PCB layout</li> <li>Enable/Disable for all outputs</li> <li>Industrial operating temperature range:<br/>-40°C to +85°C</li> </ul> |  |
| Ordering Cod                                                                                                                                                                                                                                                                                                                                                     | <b>C:</b><br>ckage Number                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                          | Package Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                                                                                                                                                                                                                                                                                                                                  | Rage Humber                                                                                                                                                                                                                              | 16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

#### **Pin Descriptions**

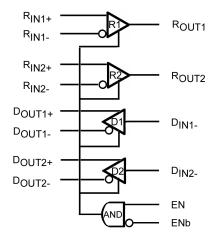
#### **Connection Diagram**

| Pin Name                                | Description                                     |
|-----------------------------------------|-------------------------------------------------|
| R <sub>IN1+</sub> , R <sub>IN2+</sub>   | Non-Inverting LVDS Inputs                       |
| R <sub>IN1-</sub> , R <sub>IN2-</sub>   | Inverting LVDS Inputs                           |
| D <sub>OUT1+</sub> , D <sub>OUT2+</sub> | Non-Inverting Driver Outputs                    |
| D <sub>OUT1-</sub> , D <sub>OUT2-</sub> | Inverting Driver Outputs                        |
| EN, ENb                                 | Driver Enable Pins for All Outputs              |
| R <sub>OUT1</sub> , R <sub>OUT2</sub>   | LVTTL Output Pins for $R_{OUT1}$ and $R_{OUT2}$ |
| D <sub>IN2</sub> , D <sub>IN2</sub>     | LVTTL Input Pins for $D_{IN1}$ and $D_{IN2}$    |
| V <sub>CC</sub>                         | Power Supply (3.3V)                             |
| GND                                     | Ground                                          |

| R <sub>IN1-</sub>    | 1 | $\bigcirc$ | 16 | - EN              |
|----------------------|---|------------|----|-------------------|
| R <sub>IN1+</sub> –  | 2 |            | 15 | - ROUT1           |
| R <sub>IN2+</sub> –  | 3 |            | 14 | - ROUT2           |
| R <sub>IN2-</sub>    | 4 |            | 13 | - GND             |
| Dout2                | 5 |            | 12 | – V <sub>DD</sub> |
| D <sub>OUT2+</sub> - | 6 |            | 11 | DIN2              |
| D <sub>OUT1+</sub>   | 7 |            | 10 | - DIN1            |
| Dout1-               | 8 |            | 9  | - ENb             |

© 2003 Fairchild Semiconductor Corporation DS500846

# FIN1049


#### **Function Table**

| Inputs |     | Outputs (LVTTL)   |                   | Inputs (LVDS) (Note 1) |                      | Outputs (LVDS)     |                    |
|--------|-----|-------------------|-------------------|------------------------|----------------------|--------------------|--------------------|
| EN     | ENb | R <sub>OUT1</sub> | R <sub>OUT2</sub> | R <sub>IN#+</sub>      | R <sub>IN#-</sub>    | D <sub>OUT#+</sub> | D <sub>OUT#-</sub> |
| Н      | L   | ON                | ON                |                        |                      | ON                 | ON                 |
| Н      | Н   | Z                 | Z                 |                        |                      | Z                  | Z                  |
| L      | Н   | Z                 | Z                 |                        |                      | Z                  | Z                  |
| L      | L   | Z                 | Z                 |                        |                      | Z                  | Z                  |
| н      | L   | Н                 | Н                 |                        | Current<br>Condition |                    |                    |

H = HIGH Logic Level L = LOW Logic Level or OPEN X = Don't Care Z = High Impedance

Note 1: Any unused Receiver Inputs should be left Open.

#### **Functional Diagram**



#### Absolute Maximum Ratings(Note 2)

| Supply Voltage (V <sub>CC</sub> )             | -0.5V to +4.6V                    |
|-----------------------------------------------|-----------------------------------|
| LVDS DC Input Voltage (VIN)                   | -0.5V to +4.6V                    |
| LVDS DC Output Voltage (V <sub>OUT</sub> )    | -0.5V to +4.6V                    |
| Driver Short Circuit Current (IOSD)           | Continuous 10mA                   |
| Storage Temperature Range (T <sub>STG</sub> ) | $-65^{\circ}C$ to $+150^{\circ}C$ |
| Max Junction Temperature (T <sub>J</sub> )    | 150°C                             |
| Lead Temperature (T <sub>L</sub> )            |                                   |
| (Soldering, 10 seconds)                       | 260°C                             |
| ESD (Human Body Model)                        | >7000V                            |
| ESD (Machine Model)                           | >250V                             |

## Recommended Operating Conditions

Supply Voltage ( $V_{CC}$ ) Magnitude of Differential Voltage ( $|V_{ID}|$ ) Operating Temperature ( $T_A$ )

Note 2: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

#### **DC Electrical Characteristics**

Over supply voltage and operating temperature ranges, unless otherwise specified

| Symbol           | Parameter                                                   | Test Conditions                                                                                       | Min                                   | Typ<br>(Note 3) | Max                   | Units |
|------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|-----------------------|-------|
|                  | LVDS Input DC S                                             | pecifications (R <sub>IN1+</sub> , R <sub>IN1-</sub> , R <sub>IN2+</sub> , R <sub>IN2-</sub> ) See Fi | igure 1 and 7                         | Table 1         | I                     | L     |
| V <sub>TH</sub>  | Differential Input Threshold HIGH                           |                                                                                                       |                                       | 0.0             | 35.0                  | mV    |
| V <sub>TL</sub>  | Differential Input Threshold LOW                            | VCM = 1.2V, 0.05V, 2.35V                                                                              | -100                                  | 0.0             | ł                     | mV    |
| V <sub>IC</sub>  | Common Mode Voltage Range                                   | $V_{ID} = 100 \text{mV}, V_{CC} = 3.3 \text{V}$                                                       | V <sub>ID</sub> /2                    | 1               | $V_{CC} - (V_{ID}/2)$ | V     |
| I <sub>IN</sub>  | Input Current                                               | $V_{CC} = 0V \text{ or } 3.6V, V_{IN} = 0V \text{ or } 2.8V$                                          |                                       |                 | ±20.0                 | mA    |
|                  | CMOS/                                                       | LVTTL Input DC Specifications (EN, ENb, D                                                             | <sub>N1</sub> , D <sub>IN2</sub> )    | .1              | ·                     | •     |
| VIH              | Input High Voltage (LVTTL)                                  |                                                                                                       | 2.0                                   |                 | V <sub>CC</sub>       | V     |
| V <sub>IL</sub>  | Input Low Voltage (LVTTL)                                   |                                                                                                       | GND                                   |                 | 0.8                   | V     |
| I <sub>IN</sub>  | Input Current                                               | 1                                                                                                     |                                       | 1               | łł                    |       |
|                  | (EN, ENb, $D_{IN1},$ $D_{IN2},$ $R_{INx+},$ and $R_{INx-})$ | $V_{IN} = 0V \text{ or } V_{CC}$                                                                      |                                       |                 | ±20.0                 | μA    |
| V <sub>IK</sub>  | Input Clamp Voltage                                         | $V_{IK} = -18 \text{mA}$                                                                              | -1.5                                  | -0.7            | 1 1                   | V     |
|                  | LVDS Out                                                    | put DC Specifications (D <sub>OUT1+</sub> , D <sub>OUT1-</sub> , D <sub>OUT</sub>                     | <sub>[2+</sub> , D <sub>OUT2-</sub> ) | .1              |                       |       |
| V <sub>OD</sub>  | Output Differential Voltage                                 |                                                                                                       | 250                                   | 350             | 450                   | mV    |
| $\Delta V_{OD}$  | V <sub>OD</sub> Magnitude Change from                       | $R_L = 100\Omega$ ,                                                                                   |                                       |                 | 25.0                  | m\/   |
|                  | Differential LOW-to-HIGH                                    | Driver Enabled,                                                                                       |                                       |                 | 35.0                  | mV    |
| V <sub>OS</sub>  | Offset Voltage                                              | See Figure 2                                                                                          | 1.125                                 | 1.25            | 1.375                 | V     |
| $\Delta V_{OS}$  | Offset Magnitude Change from                                | 1                                                                                                     |                                       |                 | 25.0                  | m\/   |
|                  | Differential LOW-to-HIGH                                    |                                                                                                       |                                       |                 | 25.0                  | mV    |
| I <sub>OS</sub>  | Chart Circuit Output Current                                | $D_{OUT+} = 0V \& D_{OUT-} = 0V$ , Driver Enabled                                                     |                                       |                 | -9.0                  | mA    |
| IOSD             | Short Circuit Output Current                                | V <sub>OD</sub> = 0V, Driver Enabled                                                                  |                                       |                 | -9.0                  | mA    |
| I <sub>OFF</sub> | Power-Off Input or Output Current                           | $V_{CC} = 0V$ , $V_{OUT} = 0V$ or $V_{CC}$                                                            |                                       |                 | ±20.0                 | μA    |
| I <sub>OZD</sub> | Disabled Output Leakage Current                             | Driver Disabled, $D_{OUT+} = 0V$ or $V_{CC}$                                                          |                                       |                 | 110.0                 |       |
|                  |                                                             | or $D_{OUT-} = 0V$ or $V_{CC}$                                                                        |                                       |                 | ±10.0                 | μA    |
|                  | СМО                                                         | S/LVTTL Output DC Specifications (R <sub>OUT1</sub> , F                                               | R <sub>OUT2</sub> )                   | .1              |                       |       |
| V <sub>OH</sub>  | Output High Voltage                                         | $I_{OH} = -2mA, V_{ID} = 200mV$                                                                       | 2.7                                   |                 | l l                   | V     |
| V <sub>OL</sub>  | Output Low Voltage                                          | I <sub>OL</sub> = 2mA, V <sub>ID</sub> = 200mV                                                        |                                       |                 | 0.250                 | V     |
| I <sub>OZ</sub>  | Disabled Output Leakage Current                             | Driver Disabled, $R_{OUTn} = 0V$ or $V_{CC}$                                                          |                                       |                 | ±10.0                 | μA    |
| I <sub>CC</sub>  | Power Supply Current (Note 4)                               | Drivers Enabled, Any Valid Input Condition                                                            |                                       |                 | 25.0                  | mA    |
| I <sub>CCZ</sub> | Power Supply Current                                        | Drivers Disabled                                                                                      |                                       |                 | 10.0                  | mA    |
| CIND             | Input Capacitance                                           | LVDS Input                                                                                            |                                       | 3.0             | ł                     | pF    |
| C <sub>OUT</sub> | Output Capacitance                                          | LVDS Output                                                                                           |                                       | 4.0             | ł                     | pF    |
| C <sub>INT</sub> | Input Capacitance                                           | LVTTL Input                                                                                           |                                       | 3.5             | ++                    | pF    |

Note 3: All typical values are at  $T_A = 25^{\circ}C$  and with  $V_{CC} = 3.3V$ .

Note 4: Both driver and receiver inputs are static. All LVDS outputs have 100Ω load. None of the outputs have any lumped capacitive load.

FIN1049

100mV to V<sub>CC</sub> -40°C to +85°C

3.0V to 3.6V

FIN1049

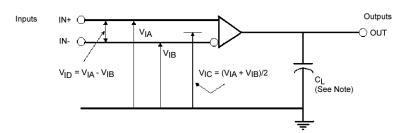
#### **AC Electrical Characteristics**

| Symbol                | Parameter                                       | Test Conditions                 | Min | Typ<br>(Note 5) | Мах  | Units |
|-----------------------|-------------------------------------------------|---------------------------------|-----|-----------------|------|-------|
|                       | Switching                                       | Characteristics - LVDS Outputs  |     |                 |      |       |
| t <sub>PLHD</sub>     | Differential Propagation Delay LOW-to-HIGH      |                                 |     |                 | 2.0  | ns    |
| t <sub>PHLD</sub>     | Differential Propagation Delay HIGH-to-LOW      |                                 |     |                 | 2.0  | ns    |
| t <sub>TLHD</sub>     | Differential Output Rise Time (20% to 80%)      |                                 | 0.2 |                 | 1.0  | ns    |
| t <sub>THLD</sub>     | Differential Output Fall Time (80% to 20%)      | See Figures 3, 4                | 0.2 |                 | 1.0  | ns    |
| t <sub>SK(P)</sub>    | Pulse Skew  t <sub>PLH</sub> - t <sub>PHL</sub> | See Figures 5, 4                |     |                 | 0.35 | ns    |
| t <sub>SK(LH)</sub> , | Channel-to-Channel Skew (Note 6)                |                                 |     |                 | 0.35 |       |
| t <sub>SK(HL)</sub>   |                                                 |                                 |     |                 | 0.55 | ns    |
| t <sub>SK(PP)</sub>   | Part-to-Part Skew (Note 7)                      |                                 |     |                 | 1.0  | ns    |
| t <sub>PZHD</sub>     | Differential Output Enable Time from Z-to-HIGH  |                                 |     |                 | 6.0  | ns    |
| t <sub>PZLD</sub>     | Differential Output Enable Time from A-to-LOW   | See Figures 5, 6                |     |                 | 6.0  | ns    |
| t <sub>PHZD</sub>     | Differential Output Disable Time from HIGH-to-Z | See Figures 5, 6                |     |                 | 3.0  | ns    |
| t <sub>PLZD</sub>     | Differential Output Disable Time from LOW-to-Z  |                                 |     |                 | 3.0  | ns    |
| f <sub>MAXD</sub>     | Maximum Frequency (Note 8)                      | See Figure 3                    | 200 |                 |      | MHz   |
|                       | Switching                                       | Characteristics - LVTTL Outputs |     |                 |      |       |
| t <sub>PHL</sub>      | Propagation Delay HIGH-to-LOW                   | Measured from 20% to 80% signal | 0.5 | 1.0             | 3.5  | ns    |
| t <sub>PLH</sub>      | Propagation Delay LOW-to-HIGH                   | $V_{ID} = 200 mV;$              | 0.5 | 1.0             | 3.5  | ns    |
| t <sub>SK1</sub>      | Pulse Skew                                      | Distributed Load                | 0.0 | 35.0            | 400  | ps    |
| t <sub>SK2</sub>      | Channel-to-Channel Skew                         | $C_L = 15 pF$ and $50 \Omega$ ; | 0.0 | 50.0            | 500  | ps    |
| t <sub>SK3</sub>      | Part-to-Part Skew                               | $R_L = 1K\Omega;$               | 0.0 |                 | 1.0  | ns    |
| t <sub>LHR</sub>      | Transition Time LOW-to-HIGH                     | V <sub>OS</sub> = 1.2V;         | 0.1 | 0.25            | 1.4  | ns    |
| t <sub>HLR</sub>      | Transition Time HIGH-to-LOW                     | See Figures 7, 8                | 0.1 | 0.18            | 1.4  | ns    |
| t <sub>PHZ</sub>      | Disable Time HIGH-to-Z                          |                                 | 2.2 | 4.5             | 8.0  | ns    |
| t <sub>PLZ</sub>      | Disable Time LOW-to-Z                           | See Figures 9, 10               | 1.3 | 3.5             | 8.0  | ns    |
| t <sub>PZH</sub>      | Enable Time Z-to-HIGH                           |                                 | 1.8 | 3.0             | 7.0  | ns    |
| t <sub>PZL</sub>      | Enable Time Z-to-LOW                            | 1                               | 0.9 | 1.4             | 7.0  | ns    |
| f <sub>MAXT</sub>     | Maximum Frequency (Note 9)                      | See Figure 7                    | 200 |                 |      | MHz   |

Note 5: All typical values are at  $T_A = 25^{\circ}C$  and with  $V_{CC} = 3.3V$ .

Note 6:  $t_{SK(LH)}$ ,  $t_{SK(HL)}$  is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction.

Note 7:  $t_{SK(PP)}$  is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either LOW-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits. Note 8:  $f_{MAX}$  generator input conditions:  $t_r = t_f < 1ns$  (10% to 90%), 50% duty cycle, 0V to 3V. Output criteria: duty cycle = 45% / 55%,  $V_{OD} > 250$ mV, all chan-

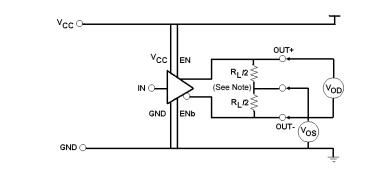

note  $c_{MAX}$  generation input conditions,  $t_r = q < 113 (10.6 to 30.6), 30.6 add cycle, 64 to 54. Output citientia, add cycle <math>-40.6750.6, 400 > 230114$ , an orallnels switch.

Note 9:  $f_{MAXT}$  generator input conditions:  $t_r = t_f < 1ns$  (10% to 90%), 50% duty cycle,  $V_{ID} = 200mV$ ,  $V_{CM} = 1.2V$ . Output criteria: duty cycle = 45% / 55%,  $V_{OH} > 2.7V$ .  $V_{OL} < 0.25V$ , all channels switching.

#### **Required Specifications**

- should be measured using MIL-STD-883C method 3015.7 standard.
- 1. Human Body Model ESD and Machine Model ESD 2. Latch-up immunity should be tested to the EIA/JEDEC Standard Number 78 (EIA/JESD78).

FIN1049

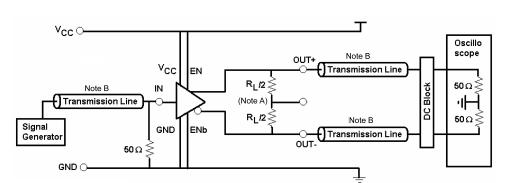



#### Note: $C_L = 15 pF$ , includes all probe and jig capacitances

FIGURE 1. Differential Receiver Voltage Definitions Test Circuit

TABLE 1. Receiver Minimum and Maximum Input Threshold Test Voltages

| Applied Voltages (V)  |                       | Resulting Differential Input<br>Voltage (mV) | Resulting Common<br>Mode Input Voltage (V) |
|-----------------------|-----------------------|----------------------------------------------|--------------------------------------------|
| VIA                   | V <sub>IB</sub>       | V <sub>ID</sub>                              | V <sub>IC</sub>                            |
| 1.25                  | 1.15                  | 100                                          | 1.2                                        |
| 1.15                  | 1.25                  | -100                                         | 1.2                                        |
| V <sub>CC</sub>       | V <sub>CC</sub> - 0.1 | 100                                          | V <sub>CC</sub> - 0.05                     |
| V <sub>CC</sub> - 0.1 | V <sub>CC</sub>       | -100                                         | V <sub>CC</sub> - 0.05                     |
| 0.1                   | 0.0                   | 100                                          | 0.05                                       |
| 0.0                   | 0.1                   | -100                                         | 0.05                                       |
| 1.75                  | 0.65                  | 1100                                         | 1.2                                        |
| 0.65                  | 1.75                  | -1100                                        | 1.2                                        |
| V <sub>CC</sub>       | V <sub>CC</sub> - 1.1 | 1100                                         | V <sub>CC</sub> - 0.55                     |
| V <sub>CC</sub> - 1.1 | V <sub>CC</sub>       | -1100                                        | V <sub>CC</sub> - 0.55                     |
| 1.1                   | 0.0                   | 1100                                         | 0.55                                       |
| 0.0                   | 1.1                   | -1100                                        | 0.55                                       |




Note:  $R_L = 100\Omega$ 

FIGURE 2. LVDS Output Circuit for DC Test

# FIN1049

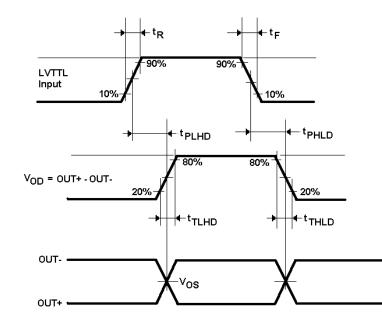
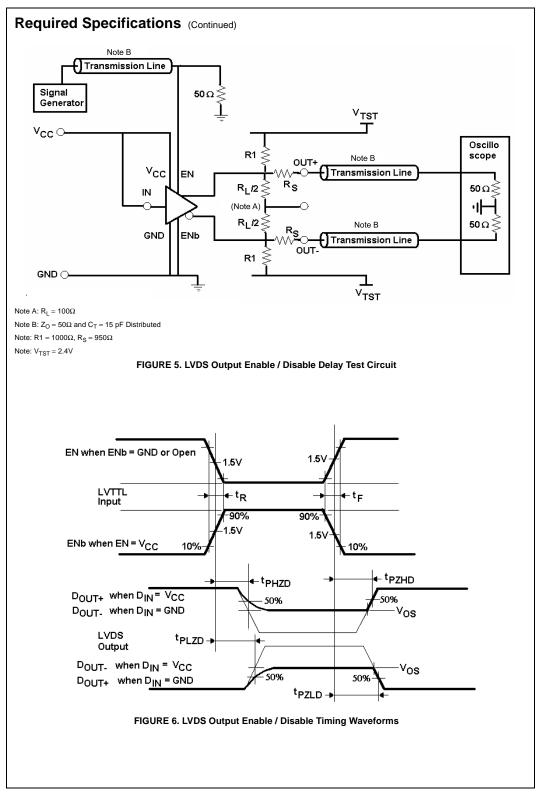
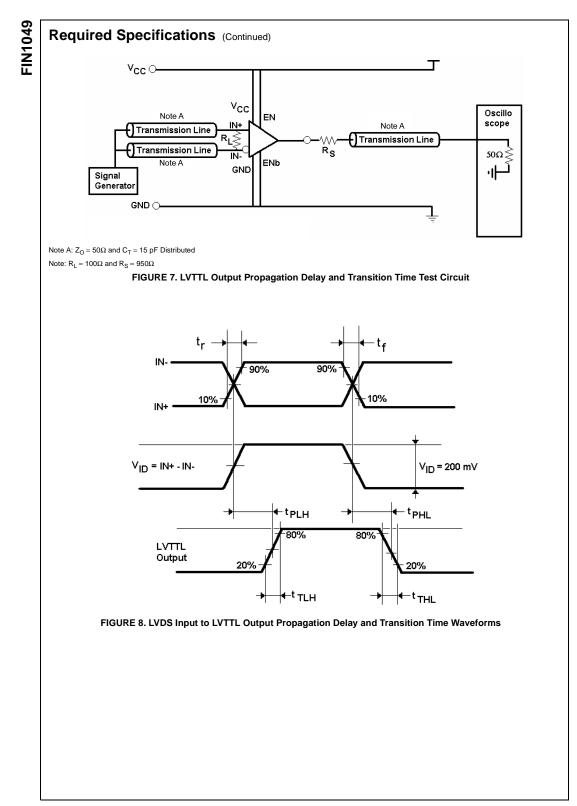
### Required Specifications (Continued)

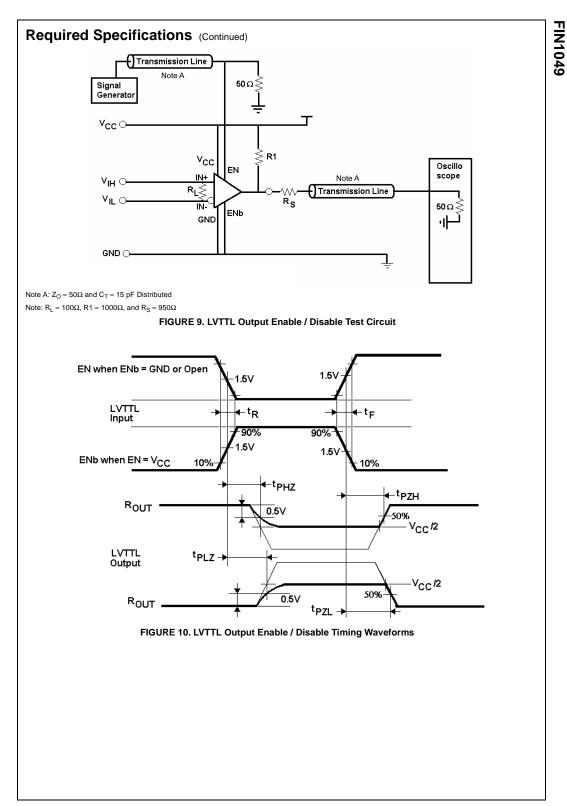


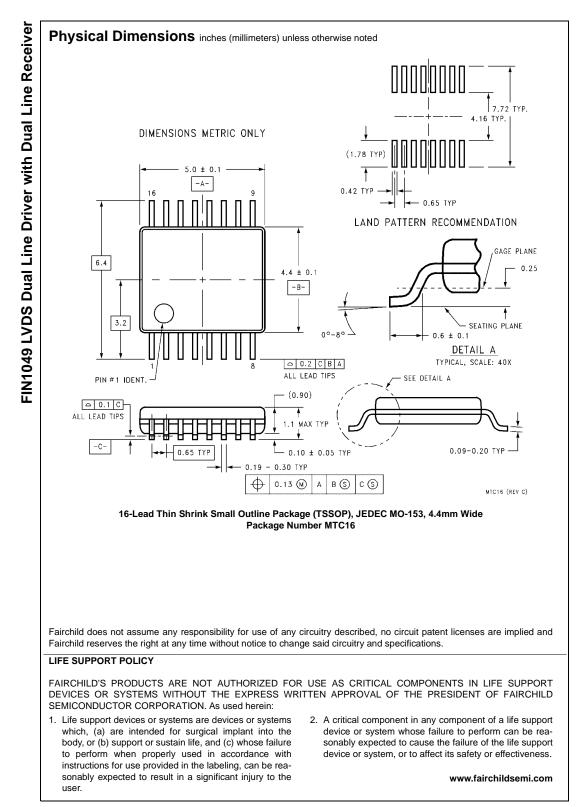
Note A:  $R_L = 100\Omega$ 

Note B:  $Z_0 = 50\Omega$  and  $C_T = 15 \text{ pF}$  Distributed





FIGURE 4. LVTTL Input to LVDS Output AC Waveform




FIN1049



8



