## SIEMENS

## Differential Magneto Resistor



1) If delivery as tape, seperate at punching-points.
2) 6 fingers on both sides free of lacquer
3) Center-distance between the Diff.-Systems.

## Dimensions in mm

## Features

- Double differential magneto resistor on one carrier
- Accurate intercenter spacing
- High operating temperature range
- High output voltage
- Compact construction
- Available in strip form for automatic assembly
- Optimized intercenter spacing on modules $m=0.5 \mathrm{~mm}$
- Reduced temperature dependence of offset voltage


## Typical applications

- Incremental angular encoders
- Detection of sense of rotation
- Detection of speed
- Detection of position


## SIEMENS

| Type | Ordering Code |
| :--- | :--- |
| FP 425 L 90 | Q65425-L90 (singular) |
| FP 425 L 90 | Q65425-L0090E001 (taped) |

The double differential magneto resistor assembly consists of two pairs of magneto resistors, (L-type $\mathrm{InSb} / \mathrm{NiSb}$ semiconductor resistors whose resistance value can be magnetically controlled), which are fixed to a silicon substrate. Contact to the magneto resistors is achieved using a copper/polyimide carrier film known as TAB.
The basic resistance of each of the magneto resistors is $90 \Omega$. The two series coupled pairs of magneto resistor are actuated by an external magnetic field or can be biased by a permanent magnet and actuated by a soft iron target.

## Maximum ratings

| Parameter | Symbol | Value | Unit |
| :--- | :--- | :--- | :--- |
| Operating temperature | $T_{\mathrm{A}}$ | $-40 /+175$ | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | $T_{\text {stg }}$ | $-40 /+185$ | ${ }^{\circ} \mathrm{C}$ |
| Power dissipation ${ }^{1)}$ | $P_{\text {tot }}$ | 800 | mW |
| Supply voltage $\left(B=0.2 \mathrm{~T}, T_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ | $V_{\text {IN }}$ | 8 | V |
| Thermal conductivity <br> -attached to heatsink <br> -in still air | $G_{\text {thase }}$ <br> $G_{\text {tha }}$ | 20 | $\mathrm{~mW} / \mathrm{K}$ |

Characteristics ( $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

| Nominal supply voltage ( $B=0.2 \mathrm{~T})^{2}$ | $V_{\text {INN }}$ | 5 | V |
| :---: | :---: | :---: | :---: |
| Basic resistance ( $I<1 \mathrm{~mA}, B=0 \mathrm{~T}$ ) | $R_{01-3}$ | 160-280 | $\Omega$ |
| Center symmetry ${ }^{\text {3 }}$ | M | $\leq 3$ | \% |
| Relative resistance change $\begin{aligned} & \left(R_{0}=R_{01-3}, R_{04.6} \text { at } B=0 \mathrm{~T}\right) \\ & \left.B= \pm 0.3 \mathrm{~T}^{4}\right)^{2} \\ & B= \pm 1 \mathrm{~T} \end{aligned}$ | $R_{\mathrm{B}} / R_{0}$ | $\begin{aligned} & >1.7 \\ & >7 \end{aligned}$ | - |
| Temperature coefficient $\begin{aligned} & B=0 \mathrm{~T} \\ & B= \pm 0.3 \mathrm{~T} \\ & B= \pm 1 \mathrm{~T} \end{aligned}$ | $T C_{\text {R }}$ | $\begin{aligned} & -0.16 \\ & -0.38 \\ & -0.54 \end{aligned}$ | $\begin{aligned} & \% / K \\ & \% / K \\ & \% / K \end{aligned}$ |

1) $T=T_{\text {case }}$
2) $T=T_{\text {case }}^{\text {case }}, T<80^{\circ} \mathrm{C}$
3) $M=\frac{R_{01-2}-R_{02-3}}{R_{01-2}} \times 100 \%$ for $R_{01-2}>R_{02-3}$
$M=\frac{R_{04-5}-R_{05-6}}{R_{04-5}} \times 100 \%$ for $R_{04-5}>R_{05-6}$
4) $1 \mathrm{~T}=1 \mathrm{Tesla}=10^{4}$ Gauss

Max. power dissipation versus temperature
$P_{\text {tot }}=f(T), T=T_{\text {case }}, T_{\mathrm{A}}$


Typical MR resistance versus temperature
$R_{01-3,4-6}=f\left(T_{\mathrm{A}}\right), B=$ Parameter


Maximum supply voltage versus temperature
$V_{\mathrm{IN}}=f(T), B=0.2 \mathrm{~T}$


Typical MR resistance
versus magnetic induction $B$
$R_{01-3,4-6}=f(B), T_{\mathrm{A}}=25^{\circ} \mathrm{C}$


