32-Bit Microcontroller

CMOS

FR30 Series

MB91F127/F128

■ DESCRIPTION

This model, designed on the basis of 32-bit RISC CPU (FR30 series), is a standard single-chip micro controller with built-in I/O resources and bus control functions. The functions are suitable for built-in control that requires high-speed CPU processing.
MB91F127 includes 256 Kbytes built-in flash memory and 14 Kbytes built-in RAM. MB91F128 includes 510 Kbytes built-in flash memory and 14 Kbytes built-in RAM.
The specifications of the devices are best suited for applications requiring high-level CPU processing capabilities, such as navigation system, high-performance FAX, and printer controller.

■ FEATURES

FR-CPU

- 32-bit RISC (FR30), load/store architecture, 5-step pipeline
- Operating frequency : Internal 25 MHz
- General register : 32bit x 16 registers
- 16-bit fixed-length instructions (primitives), 1 instruction/1 cycle
- Instructions of memory-to-memory transfer, bit processing, and barrel shift : Instructions suitable for built-in control
(Continued)

PACKAGE

100 pin, Plastic LQFP
(FPT-100P-M05)

MB91F127/F128

- Function entry/exit instructions, multi load/store instruction for register data : High-level language compatible instructions
- Register interlock functions: Simple description of assembler language
- Branch instructions with delay slot : Reduced overhead on branching process
- Built-in multiplier/ Supporting at instruction level

Signed 32 -bit multiplying : 5 cycles
Signed 16-bit multiplying : 3 cycles

- Interrupt (saving PC and PS) : 6 cycles, 16 priority levels

Bus interface

- Maximum of 25 MHz internal operation rate
- 25-bit address bus (32 MB space)
- 16-bit address output, 8/16-bit data input/output
- Basic bus cycle : 2-clock cycle
- Chip selection outputs specifiable in a minimum of 64 Kbytes steps : 6 outputs
- Automatic wait cycle : Specifiable flexibly from 0 cycle to 7 cycles for each area
- Supporting time-division input/output interface for address/data (for area 1 only)
- Unassigned data/address terminals are available as input/output ports
- Supporting little endian mode (selecting one area from area 1 to area 5)

DMAC (DMA controller)

- 8 channels
- Transfer factor : Interrupt request of built-in resources
- Transfer sequence : Step transfer/Block transfer/Burst transfer/Consecutive transfer
- Transfer data length : Selectable among 8 bits, 16 bits, and 32 bits
- Pausing is allowed by interrupt request

UART

- 3 channels
- Full-duplex double buffer
- Data length : 7 to 9 bits (no parity), 6 to 8 bits (with parity)
- Asynchronous (start-stop synchronization) or CLK synchronous communication is selectable
- Multi processor mode
- Built-in 16-bit timer (U-Timer) used as a baud-rate generator: Generates an arbitrary baud rate
- External clock is available as a transfer clock
- Error detection : parity, frame, and overrun

A/D converter (sequential transducer)

- 8/10-bit resolution, 8 channels
- Sequential comparison and transducer : At $25 \mathrm{MHz}, 5.2 \mu \mathrm{~s}$
- Built-in sample and hold circuit
- Conversion mode : Selectable among single conversion, scan conversion, and repeat conversion
- Activation : Selectable among software, external trigger, and built-in timer

Reload timer

- 16 -bit timer : 3 channels
- Internal clock : 2-clock cycle resolution, selectable among 2/8/32 dividing and external clock

MB91F127/F128

(Continued)

Other interval timers

- 16-bit timer : 3 channels (U-Timer)
- PPG timer : 4 channels
- 16-bit OCU : 4 channels, ICU : 4 channels, Free-run timer : 1 channel
- Watchdog timer: 1 channel

Flash memory 510 KB

- 510 KB FLASH ROM: Read/Write/Erase is allowed with a same power

Built- in RAM 14 KB

- D-bus RAM 12 KB, C-bus RAM 2 KB

Bit search module

- Position of a first bit that changes between " 1 " and " 0 " is searched in one cycle, within an MSB of one word.

Interrupt controller

- External interrupt input : Normal interrupt×6 (INT0 to INT5)
- Internal interrupt factors : UART, DMAC, A/D, Reload timer, UTIMER, delay interrupt, PPG, ICU, and OCU
- Priority levels are programmable (16 levels)

Reset factors

- Power-on reset/watchdog timer/software reset/external reset

Low power consumption mode

- Sleep/stop mode

Clock control

- Built-in PLL circuit, selectable among 1-multiplication, and 2-multiplication
- Gearing function: Operation clock frequencies are freely and independently specifiable for CPU and peripherals.
Gear clocks are selectable among $1 / 1,1 / 2,1 / 4$, and $1 / 8$ (or among $1 / 2,1 / 4,1 / 8$, and $1 / 16$). Upper limit of peripheral operations is 25 MHz .

Others

- Package : LQFP-100
- CMOS technology : $0.35 \mu \mathrm{~m}$
- Power supply voltage : $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

SERIES CONFIGURATION

Model name	MB91F127	MB91F128	MB91FV129
Outline	Quantity production	Quantity production	Evaluation product
FLASH memory	256 KB	510 KB	510 KB
D-bus RAM	12 KB	12 KB	16 KB
C-bus RAM	2 KB	2 KB	2 KB

MB91F127/F128

PIN ASSIGNMENT

(TOP VIEW)

(FPT-100P-M05)

■ PIN DESCRIPTION

Note that the numbers in the table are not pin numbers on a package.

No.	Pin name	Input/output circuit type	Description
$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	D16/P20 D17/P21 D18/P22 D19/P23 D20/P24 D21/P25 D22/P26 D23/P27	D	Bit 16 through bit 23 of external data bus. The terminals are available as general I/O ports (P20 through P27) when external bus width is specified at 8 bits or in singlechip mode.
$\begin{gathered} \hline 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \end{gathered}$	D24/P30 D25/P31 D26/P32 D27/P33 D28/P34 D29/P35 D30/P36 D31/P37	D	Bit 24 through bit 31 of external data bus. The terminals are available as general I/O ports (P30 through P37) when the terminals are not used.
$\begin{aligned} & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	A00/P40 A01/P41 A02/P42 A03/P43 A04/P44 A05/P45 A06/P46 A07/P47 A08/P50 A09/P51 A10/P52 A11/P53 A12/P54 A13/P55 A14/P56 A15/P57	D	Bit 00 through bit 15 of external address bus. The terminals are available as general I/O ports (P40 through P47 and P50 through P57) when the terminals are not used as address buses.
$\begin{aligned} & 33 \\ & 34 \\ & 35 \\ & 36 \\ & 37 \\ & 38 \\ & 39 \\ & 40 \end{aligned}$	A16/P60 A17/P61 A18/P62 A19/P63 A20/P64 A21/P65 A22/P66/IN2 A23/P67/IN3	D	Bit 16 through bit 23 of external address bus. The terminals are available as general I/O ports (P60 through P67) when the terminals are not used as address busses. [IN2,IN3]: Input terminals of input capture. This function is active when input capture is operating.

(Continued)

No.	Pin name	Input/output circuit type	Description			
41	A24/P70/FRCK/ TCI2	D	Bit 24 of external address bus. [P70] A24, FRCK and TCl2 are available as general input ports when they are not used. [FRCK] External clock input of free-run timer. This function is active when external clock input of free-run timer is used. [TCI2] External clock input of timer 2. This function is active when external clock input of timer 2 is used.			
42	RDY/P80	D	External ready input. Enter " 0 " when bus cycle under execution does not complete. This terminal is available as general input/ output port when it is not used.			
43	BGRNT/P81/IN0	D	External bus open receive output. This terminal outputs "L" when an external bus is released. This terminal is available as general input/output port when it is not used. [INO] Input capture input. This function is active when input capture is under input operation.			
44	BRQ/P82/IN1	D	External bus open request input. Enter "1" when releasing external bus. This terminal is available as general input/output port when it is not used. [IN1] Input capture input. This function is active when input capture is under input operation.			
45	$\overline{\mathrm{RD}} / \mathrm{P} 83$	D	External bus read strobe. This terminal is available as general input/output port when it is not used.			
46	WR0/P84	D	External bus write strobe.Control signals and data bus byte positions are related as the following :			
47	$\overline{\text { WR1/P85 }}$	D		16-bit bus width	8-bit bus width	Single chip mode
			D31 to D24	WR0	WR0	(port allowed)
			D23 to D16	WR1	(port allowed)	(port allowed)
			Note : $\overline{\mathrm{WR1}}$ is set to Hi-z during resetting. For using with 16 -bit bus width, use an external pull-up resistor. [P84 or P85] Available as general input/output ports when WR0 and WR1 are not used.			
$\begin{aligned} & 48 \\ & 49 \\ & 50 \end{aligned}$	$\begin{aligned} & \overline{\overline{C S} 0} / P A 0 \\ & \overline{\mathrm{CS} 1 / P A 1} \\ & \hline \mathrm{CS} 2 / P A 2 \end{aligned}$	D	Chip select 0 output (Low active) Chip select 1 output (Low active) Chip select 2 output (Low active) [PA0 1,1 or 2] Available as general input/output ports when CS0, $\overline{\mathrm{CS} 1}$ and CS 2 are not used.			

(Continued)

No.	Pin name	Input/output circuit type	Description
$\begin{aligned} & 51 \\ & 52 \\ & 53 \end{aligned}$	$\begin{aligned} & \overline{\mathrm{CS} 3} / \mathrm{PA} 3 / \mathrm{SO} 1 \\ & \overline{\mathrm{CS} 4} / \mathrm{PA} 4 / \mathrm{SI} 1 \\ & \overline{\mathrm{CS} 5} / \mathrm{PA} 5 / \mathrm{SC} 1 \end{aligned}$	D	Chip select 3, 4, 5 output (Low active). [PA3,4,5] Available as general input/output ports when channel 1 of chip select UART is not used. [SO1,SI1,SC1] Data output, data input, and clock terminals of UART1. Active when UART1 operation is allowed.
54	CLK/PA6	D	System clock output. Outputs a same clock as the same frequency of external bus operation. [PA6] Available as general input/output ports it is not used.
$\begin{aligned} & \hline 55 \\ & 56 \\ & 57 \\ & 58 \\ & 59 \\ & 60 \\ & 61 \\ & 62 \end{aligned}$	OCPA0/PG0 OCPA1/PG1 OCPA2/PG2 OCPA3/PG3 OC0/PG4 OC1/PG5 OC2/PG6 OC3/PG7	D	[OCPA0 to 3] PPG timer outputs. The function is active when PPG timer output is allowed. [OCO to 3] Output comparison output. The function is active when output comparison output is allowed. [PB0-7] Available as general input/output ports it is not used.
$\begin{aligned} & \hline 63 \\ & 64 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline \text { MD0 } \\ & \text { MD1 } \\ & \text { MD2 } \\ & \hline \end{aligned}$	B	Mode terminals 0 through 2. The terminals specify basic operation mode of MCU. Use the terminals by connecting them directly to VCC or VSS.
66	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$	A	Clock (oscillation) input. Clock (oscillation) output.
68	$\overline{\mathrm{RST}}$	C	External reset input.
69	HST	C	Hardware standby input.
70	P86/ALE	D	[ALE] Address latch signal output. The function is active when ALE output of EPCR is allowed.
$\begin{aligned} & 71 \\ & 72 \end{aligned}$	INTO/PEO INT1/PE1 INT2/PE2 INT3/PE3	D	[INT0,1,2,3] External interrupt request inputs. The input is used whenever necessary if external interrupt is allowed. Output of other functions must be suspended if not on purpose.
			[PE0, 1,2,3] General input/output port
$\begin{aligned} & 75 \\ & 76 \end{aligned}$	INT4/PE4/TCI1 INT5/PE5/SC0	D	[INT4,5] External interrupt request inputs. The input is used whenever necessary if concerned external interrupt is allowed. Output of other functions must be suspended if not on purpose. [TCI1] External clock input of timer 1. [SC0] Clock input of UARTO.
			[PE4,5] General input/output port
77	SIO/PE6	D	[SIO] Data input of UART0.This function is active when data input of UARTO is allowed.
			[PE6]General input/output port
78	SO0/PE7	D	[SOO] Data output of UARTO.This function is active when data output of UARTO is allowed.
			[PE7] General input/output port

(Continued)
(Continued)

No.	Pin name	Input/output circuit type	Description
79	PF0/TCIO	D	[TCIO] External clock input of timer 0.
			[PF0] General input/output port
80	SI2/PF1	D	[SI2] Data input of UART2.This function is active when data input of UART2 is allowed.
			[PF1] General input/output port
81	SO2/PF2	D	[SO2] Data output of UART2. This function is active when data output of UART2 is allowed.
			[PF2] General input/output port. This function is active when data output of UART2 is disallowed.
82	SC2/PF3/ATG	D	[SC2] Clock input of UART2 [$\overline{A T G}$]External trigger input of A/D converter The input is used whenever necessary if a function concerned is selected. Output of other functions must be suspended if not on purpose.
			[PF3] General input/output port
83 to 90	AN0/PJO AN1/PJ1 AN2/PJ2	E	[ANO to AN7] Analog input of A/D converter. This function is active when analog input is specified in AIC register.
	AN4/PJ4 AN5/PJ5 AN6/PJ6 AN7/PJ7		[PJ0 through PJ7] General input/output ports
91	AVCC	-	VCC power supply for A/D converter
92	AVRH	-	Reference voltage of A/D converter (high potential side). Be sure to turn on or off this terminal with a potential higher than AVRH applied to VCC.
93	AVSS/AVRL	-	A/D converter VSS power source and reference voltage (low potential side).
94 to 96	VCC	-	Power sources of digital circuits. Be sure to connect power source to all terminals when the device is used.
97 to 100	VSS	-	Ground level of digital circuits.

Note : Most of the above terminals multiplex inputs and outputs of I/O ports and resources, as indicated as "XXXX/ PXX". If the outputs of ports and resources conflict with each other on the terminals, resources take preferences.

INPUT/OUTPUT CIRCUIT TYPE

Type	Circuit	Remarks
A		- For 25 MHz system - Oscillation feedback register : Approx. $1 \mathrm{M} \Omega$ - Standby control is available.
B		- CMOS level input - High-voltage control is available for FLASH test.
C		- CMOS level hysteresis input - Standby control is not available.
D		- CMOS level output - CMOS level hysteresis input - Standby control is available
E		- Standby control is available - CMOS level output - CMOS level hysteresis input - Analog input

MB91F127/F128

■ HANDLING DEVICES

1. Preventing latch up

On a CMOS IC, latch up may occur when a voltage higher than VCC or a voltage lower than VSS is applied to input terminal or output terminal, or when a voltage exceeding rated level is applied across VCC and VSS. Latch up causes drastic increase of power source current, which may result in destruction of the element by heat. Take extra care not to exceed maximum rating in use. Also, take extra care so that analog terminal does not exceed digital power source.
2. Treatment of unused input terminals

Leaving unused terminals open may cause malfunction. Apply pull-up or pull-down treatment on unused terminals.

3. External reset input

Complete resetting of internal system requires inputting "L" level signal to $\overline{\mathrm{RST}}$ terminal for a minimum of 5 machine cycles.

4. Notes on using external clock

When using an external clock, supply a clock signal to X0 terminal and supply its antiphase clock to X1 terminal simultaneously. In this case, do not use STOP mode (oscillation stop mode). (Because X1 terminal halts with " H " output under STOP status.)

Under a 12.5 MHz frequency, the device operates with a clock supplied to X0 terminal only.
Figures show examples of using an external clock.

Example of using external clock (normal)

\square
Note : STOP mode (oscillation stop mode) is not available.
Example of using external clock (allowed under operation at 12.5 MHz or lower frequency)
\square

5. Connecting power supply terminals (VCC, VSS)

If two or more VCC, VSS terminals are used, the terminals to be placed under the same potentials are connected with each other internally for preventing malfunctions such as latch up. However, for reducing unwanted radiation, preventing malfunctions of strobe signals and observing total power and current ratings, be sure to connect all of these terminals to power supply and ground externally.
Connecting power supply to VCC - VSS in impedance as low as possible is desirable.
6. Crystal oscillator circuit

Noises around X0 and X1 terminals causes malfunction of the device. Design printed wiring so that $\mathrm{X} 0, \mathrm{X} 1$, and crystal oscillator (or ceramic oscillator), and bypass capacitor to the ground are aligned as close as possible one another. Also the wiring of those elements should not cross with other wiring if possible. Printed wiring with ground wires around X0 and X1 terminals ensures more stable operations. Such designing is strongly recommended.

7. Treating NC terminals

Be sure to leave NC terminals open.

8. Mode terminals (MD0 through MD2)

Do not connect the mode terminals directly to VCC or VSS.
For preventing malfunctions caused by noises, make printed traces between the mode terminals and VCC or VSS as short as possible, and connect the elements in lower impedance.

9. Turning power on

Be sure to turn on the power of the device with RST terminal placed under "L" level. Ensure a period at a minimum of 5 cycles of internal operation clock before placing the terminal under " H " level.
10. Terminal status upon turning on power

Status upon turning on the power is indefinite. Upon turning on the power, oscillation starts and the circuit is initialized.

11. Oscillation input upon turning on power

Upon turning on the power, be sure to input a clock signal until oscillation stabilizing wait status is released.

12. Initializing power-on reset

The device includes some built-in registers that are initialized only with power-on reset operation. For initializing the registers, perform power-on reset by turning on the power again.

13. Recovery from Sleep/Stop status

For recovering from Sleep/Stop status initiated by a program in C-Bus RAM, reset the device instead of recovering by an interrupt process.

MB91F127/F128

BLOCK DIAGRAM

Notes : - Terminals are described in functional groups (actual terminals are partially multiplexed).

- For using REALOS, perform time management by external interrupt or built-in timer.

- CPU CORE MEMORY SPACE

- MB91F127

Note : External area is not accessible in single-chip mode. When accessing to external areas, select the internal ROM external bus mode in mode register.

Direct addressing areas

The areas described below are used for I/O processes. The areas, referred to as "direct addressing areas," allow specifying an operand address directly by an instruction. The direct addressing areas varies as the following, depending on size of the data to be accessed.

- Byte-data access : 0 to 0FFH
- Half-word data access : 0 to 1 FF
- Word-data access : 0 to 3 FFH

MB91F127/F128

- MB91F128

Note : External area is not accessible in single-chip mode. When accessing to external areas, select the internal ROM external bus mode in mode register.

Direct addressing areas

The areas described below are used for I/O processes. The areas, referred to as "direct addressing areas," allow specifying an operand address directly by an instruction. The direct addressing areas varies as the following, depending on size of the data to be accessed.

- Byte-data access : 0 to 0FFH
- Half-word data access : 0 to 1 FF
- Word-data access : 0 to 3 FFн

LEGEND OF I/O MAP

address	Register				Internal resource
	+0	+1	+2	+3	
$\xrightarrow[(100000]{ }$	$\left\lvert\, \begin{aligned} & \rightarrow \\ & \underset{X X X X X X X}{ }[\mathrm{PD} / \mathrm{W}] \\ & \end{aligned}\right.$	PDR2 [R/W] XXXXXXXX	- -		Port Data Register
	Read/write attribute				

Register name (the register listed in the first column is at address $4 n$, the register listed in the second column is at address $4 \mathrm{n}+1,--$)
Leftmost register address (the first column register is on the MSB side of data in word access mode)
Note : Register bit values indicate initial values as shown below :
"1" : Initial value"1"
"0" : Initial value"0"
" X " : Initial value " X "
"-" : Register does not exist physically in this position.

MB91F127/F128

I/O MAP

Address	Register				Internal resource
	+0	+1	+2	+3	
000000н	PDR3 [R/W] XXXXXXXX	$\begin{aligned} & \hline \text { PDR2 [R/W] } \\ & \text { XXXXXXXX } \end{aligned}$	-	-	Port data Register
000004H	$\begin{aligned} & \text { PDR7 [R/W] } \\ & \text { - .-. - X } \end{aligned}$	PDRR6 [R/W] XXXXXXXX XXXXXXXX	PDR5 [R/W] XXXXXXXX	PDR4 [R/W] XXXXXXXX	
000008н	-	PDRA [R/W] XXXXXXXX	-	$\begin{aligned} & \hline \text { PDR8[R/W] } \\ & \text { - - XXXXXX } \end{aligned}$	
$00000 \mathrm{CH}_{\text {H }}$	-				
000010н	-	-	PDRE [R/W] XXXXXXXX	PDRF [R/W] XXXXXXXX	
000014H	PDRG [R/W] XXXXXXXX	-	-	PDRJ [R/W] XXXXXXXX	
000018H	-	-	-	-	Reserved
00001 CH_{H}	$\begin{aligned} & \hline \text { SSR [R/W] } \\ & 00001-00 \end{aligned}$	SIDR [R/W] XXXXXXXX XXXXXXXX	$\begin{aligned} & \hline \text { SCR [R/W] } \\ & 00000100 \end{aligned}$	$\begin{aligned} & \text { SMR [R/W] } \\ & 00-0-00 \end{aligned}$	UART0
000020н	$\begin{aligned} & \hline \text { SSR [R/W] } \\ & 00001-00 \end{aligned}$	$\begin{aligned} & \hline \text { SIDR [R/W] } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{aligned} & \hline \text { SCR [R/W] } \\ & 00000100 \end{aligned}$	$\begin{aligned} & \text { SMR [R/W] } \\ & 00-0-00 \end{aligned}$	UART1
000024	$\begin{aligned} & \hline \text { SSR [R/W] } \\ & 00001-00 \end{aligned}$	$\begin{aligned} & \hline \text { SIDR [R/W] } \\ & \mathrm{XXXXXXXX} \end{aligned}$	$\begin{aligned} & \hline \text { SCR [R/W] } \\ & 00000100 \end{aligned}$	$\begin{aligned} & \text { SMR [R/W] } \\ & 00--0-00 \end{aligned}$	UART2
000028 ${ }^{\text {H }}$	TMRLR [W] XXXXXXXX XXXXXXXX		TMR [W] XXXXXXXX XXXXXXXX		Reload Timer 0
00002CH	-		$\begin{gathered} \text { TMCSR [R/W] } \\ ---000000000000 \end{gathered}$		
000030н	$\begin{gathered} \text { TMRLR [W] } \\ X X X X X X X \quad X X X X X X X \end{gathered}$		TMR [W]XXXXXXXX XXXXXXXX		Reload Timer 1
000034H	-		TMCSR [R/W] -- - - 000000000000		
000038H	-		-		Reserved
$00003 \mathrm{CH}_{\mathrm{H}}$	TMRLR [W] XXXXXXXX XXXXXXXX		$\begin{gathered} \text { TMR [W] } \\ \text { XXXXXXX } \quad \text { XXXXXXXX } \end{gathered}$		Reload Timer 2
000040н	-		TMCSR [R/W] -- - 000000000000		
000044H	$\begin{gathered} \text { IPCP1[R] } \\ \text { XXXXXXX XXXXXXXX } \end{gathered}$		$\begin{gathered} \text { IPCPO[R] } \\ \text { XXXXXXXX XXXXXXX } \end{gathered}$		16 bit ICU
000048	IPCP3[R] XXXXXXXX XXXXXXXX		IPCP2[R] XXXXXXXX XXXXXXXX		
00004CH	-	$\begin{gathered} \hline \text { ICS23[R/W] } \\ 00000000 \end{gathered}$	-	$\begin{aligned} & \hline \text { ICS01[R/W] } \\ & 00000000 \end{aligned}$	
000050н	ADCR [W] 00101-XX XXXXXXXX		ADCS [R/W] 00000000000000000		A/D converter (Serially compared)

(Continued)

Address	Register				Internal resource
	+0	+1	+2	+3	
000054н	OCCP1[R/W] XXXXXXXX XXXXXXXX		OCCPO[R/W] XXXXXXXX XXXXXXXX		16 bit OCU
000058н	OCCP3[R/W] XXXXXXXX XXXXXXXX		OCCP2[R/W] XXXXXXXX XXXXXXXX		
00005CH	-		-		Reserved
000060н	-		-		
000064н	$\begin{gathered} \text { OCS2, 3[R/W] } \\ \text { XXX00000 } 0000 \mathrm{XX00} \end{gathered}$		$\begin{gathered} \text { OCSO, } 1[\mathrm{R} / \mathrm{W}] \\ \text { XXX00000 } 0000 \times \mathrm{X} 00 \end{gathered}$		16 bit OCU
000068н	-		-		Reserved
00006CH	$\begin{gathered} \text { TCDT [R/W] } \\ 0000000000000000 \end{gathered}$		$\begin{gathered} \text { TCCS [R/W] } \\ 0-----00000000 \end{gathered}$		Free run timer
000070н	-		-		Reserved
000074H	-		-		Reserved
000078н	UTM/UTIMR [R/W] 0000000000000000		-	$\begin{aligned} & \text { UTIMC[R/W] } \\ & 0-00001 \end{aligned}$	U-Timer0
00007Сн	UTM/UTIMR [R/W] 0000000000000000		-	UTIMC[R/W] $0--00001$	U-Timer1
000080н	UTM/UTIMR [R/W] 0000000000000000		-	$\begin{aligned} & \hline \text { UTIMC[R/W] } \\ & 0-00001 \end{aligned}$	U-Timer2
000084н	-		-		Reserved
000088н	-		-		
$00008 \mathrm{CH}_{\text {н }}$	-		-		Reserved
000090н	-		-		
000094н	$\begin{aligned} & \hline \text { EIRR [R/W] } \\ & 00000000 \end{aligned}$	ENIR [R/W] 00000000	-		External interrupt/ NMI
000098н	$\begin{gathered} \text { EHVR [R/W] } \\ ---0000 \end{gathered}$	$\begin{gathered} \text { ELVR [R/W] } \\ 00000000 \end{gathered}$	-		

(Continued)

MB91F127/F128

Address	Register				Internal resource
	+0	+1	+2	+3	
00009Сн	-				Reserved
0000A0н	-				
0000А4н	-				
0000A8H	-				
0000ACH	-				
0000B0н	-				
0000B4н	-				
0000B8H	-				
0000BCH	-				
0000С0н	-				
0000C4н	-				
0000С8н	-				
0000CCH	-				
0000D0н	-	-	$\begin{aligned} & \text { DDRE [W] } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \text { DDRF [W] } \\ & 00000000 \end{aligned}$	Port direction register
0000D4н	-	$\begin{gathered} \text { AIC3[W] } \\ 11111111 \end{gathered}$	-	-	A/D converter
0000D8н	$\begin{aligned} & \text { DDRG [W] } \\ & 00000000 \end{aligned}$	-	-	$\begin{aligned} & \hline \text { DDRJ [W] } \\ & 00000000 \end{aligned}$	Port direction register
0000DCH	GCN1 [R/W]0011001000010000		-------	$\begin{gathered} \text { GCN2[R/W] } \\ 00000000 \end{gathered}$	PPG ctl
0000E0н	$\begin{gathered} \text { PTMRO [R] } \\ 1111111111111111 \end{gathered}$		$\begin{gathered} \text { PCSR0 [W] } \\ \text { XXXXXXXX XXXXXXX } \end{gathered}$		PPG0
0000E4н	PDUTO [W] XXXXXXXX XXXXXXXX		$\begin{aligned} & \hline \text { PCNHO[R/W] } \\ & 0000000- \end{aligned}$	$\begin{gathered} \text { PCNLO[R/W] } \\ 00000000 \end{gathered}$	
0000E8H	$\begin{gathered} \text { PTMR1 [R] } \\ 11111111 \quad 11111111 \end{gathered}$		PCSR1 [W]XXXXXXXX XXXXXXX		PPG1
0000ECH	$\begin{gathered} \text { PDUT1 [W] } \\ \text { XXXXXXXX XXXXXXX } \end{gathered}$		$\begin{gathered} \text { PCNH1[R/W] } \\ 0000000- \end{gathered}$	$\begin{gathered} \hline \text { PCNL1[R/W] } \\ 00000000 \end{gathered}$	
0000FOH	$\begin{gathered} \text { PTMR2 [R] } \\ 111111111111111 \end{gathered}$		$\begin{gathered} \text { PCSR2 [W] } \\ \mathrm{XXXXXXX} \mathrm{XXXXXXX} \end{gathered}$		PPG2
0000F4 ${ }_{\text {H }}$	$\begin{gathered} \text { PDUT2 [W] } \\ \mathrm{XXXXXXX} \mathrm{XXXXXXX} \end{gathered}$		$\begin{gathered} \text { PCNH2[R/W] } \\ 0000000- \end{gathered}$	$\begin{gathered} \text { PCNL2[R/W] } \\ 00000000 \end{gathered}$	
0000F8н	PTMR3 [R] 1111111111111111		$\begin{gathered} \text { PCSR3 [W] } \\ X X X X X X X X X X X X X X \end{gathered}$		PPG3
0000FCH	PDUT3 [W] XXXXXXXX XXXXXXXX		$\begin{aligned} & \text { PCNH3[R/W] } \\ & 0000000- \end{aligned}$	$\begin{aligned} & \text { PCNL3[R/W] } \\ & 00000000 \end{aligned}$	

(Continued)

Address	Register						Internal resource
	+0		+1	+2		+3	
$\begin{gathered} \hline 000100_{\mathrm{H}} \\ \text { to } \\ 0001 \mathrm{FC}_{\mathrm{H}} \end{gathered}$	-						Reserved
000200н							DMAC
000204н	DACSR $[R / W]$ 00000000 00000000 00000000 00000000						
000208н							
00020CH	-						
$\begin{gathered} 000210 н \\ \text { to } \\ 0002 \mathrm{FC} \end{gathered}$	-						Reserved
$\begin{gathered} 000300 \text { н } \\ \text { to } \\ 0003 \text { ЕСн } \end{gathered}$	-						Reserved
0003FOH							Bit search module
0003F4 н							
0003F8н							
0003FCH							

(Continued)

Address	Register				Internal resource
	+0	+1	+2	+3	
000400н	$\begin{gathered} \hline \text { ICR00 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR01[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR02[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR03[R/W] } \\ ---11111 \end{gathered}$	Interrupt controller
000404H	$\begin{gathered} \hline \text { ICR04[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR05[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR06[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR07[R/W] } \\ ---11111 \end{gathered}$	
000408н	$\begin{gathered} \text { ICR08 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR09[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR10[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR11[R/W] } \\ ---11111 \end{gathered}$	
00040Сн	$\begin{aligned} & \text { ICR12[R/W] } \\ & ---11111 \end{aligned}$	$\begin{gathered} \text { ICR13[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR14[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR15[R/W] } \\ ---11111 \end{gathered}$	
000410н	$\begin{gathered} \hline \text { ICR16[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR17[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR18[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR19[R/W] } \\ ---11111 \end{gathered}$	
000414H	$\begin{aligned} & \hline \text { ICR20[R/W] } \\ & ---11111 \end{aligned}$	$\begin{gathered} \hline \text { ICR21[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR22[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR23[R/W] } \\ ---11111 \end{gathered}$	
000418	$\begin{gathered} \text { ICR24 [R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR25[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR26[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR27[R/W] } \\ ---11111 \end{gathered}$	
	$\begin{gathered} \hline \text { ICR28[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR29[R/W] } \\ ---11111 \end{gathered}$	$\begin{aligned} & \text { ICR30[R/W] } \\ & ---11111 \end{aligned}$	$\begin{gathered} \text { ICR31[R/W] } \\ ---11111 \end{gathered}$	
000420н	$\begin{gathered} \hline \text { ICR32[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR33[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR34[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR35[R/W] } \\ ---11111 \end{gathered}$	
000424H	$\begin{gathered} \hline \text { ICR36[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR37[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR38[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR39[R/W] } \\ ---11111 \end{gathered}$	
000428	$\begin{gathered} \text { ICR40[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR41[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR42[R/W] } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR43[R/W] } \\ ---11111 \end{gathered}$	
00042Ch	$\begin{gathered} \hline \text { ICR44[R/W] } \\ ---11111 \end{gathered}$	ICR45[R/W] $---11111$	$\begin{aligned} & \hline \text { ICR46[R/W] } \\ & ---11111 \end{aligned}$	$\begin{gathered} \hline \text { ICR47[R/W] } \\ ---11111 \end{gathered}$	
000430 ${ }^{\text {H }}$	DICR [R/W]	HRCL $[R / W]$ ---11111	-	-	Delay interrupt
$\begin{gathered} 000434 \mathrm{H} \\ \text { to } \\ 00047 \mathrm{C}_{\mathrm{H}} \end{gathered}$	-				Reserved
000480н	$\begin{gathered} \hline \text { RSRR/WTCR } \\ \text { [R/W] } \\ \text { 1XXXX - } 00 \end{gathered}$	$\begin{gathered} \text { STCR [R/W] } \\ 000111-- \end{gathered}$	PDDR [R/W] ---0000	CTBR [W] XXXXXXXX	Clock controller block
000484н	$\begin{aligned} & \hline \text { GCR [R/W] } \\ & 110011-1 \end{aligned}$	WPR [W] XXXXXXXX	-	-	
000488н	$\begin{aligned} & \hline \text { PTCR [R/W] } \\ & 00--0---1 \end{aligned}$	-			PLL controller block
$\begin{gathered} \hline 00048 \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 0005 \mathrm{FC}_{\mathrm{H}} \end{gathered}$	-				Reserved

(Continued)

(Continued)

Note : Do not issue RMW instructions to a register with write-only bit.
RMW instructions (RMW : Read modify write)

AND Rj, @Ri	OR Rj, @Ri	EOR Rj, @Ri
ANDH Rj, @Ri	ORH Rj, @Ri	EORH Rj, @Ri
ANDB Rj, @Ri	ORB Rj, @Ri	EORB Rj, @Ri
BANDL \#u4, @Ri	BORL \#u4, @Ri	BEORL \#u4, @Ri
BANDH \#u4, @Ri	BORH \#u4, @Ri	BEORH \#u4, @Ri

Data in "Reserved" or "-" area is indefinite.

INTERRUPT CAUSES, INTERRUPT VECTORS AND INTERRUPT CONTROL REGISTER ALLOCATIONS

Interrupt causes	Interrupt number		Interrupt level		TBR default Address*2
	Decimal	Hexadecimal	Register*1	Offset	
Reset	0	00	-	3FCH	000FFFFFCH
Reserved by system	1	01	-	3F8H	000FFFFF8н
Reserved by system	2	02	-	3F4H	000FFFFF4 ${ }_{\text {H }}$
Reserved by system	3	03	-	3F0н	000FFFFF0н
Reserved by system	4	04	-	3ECH	000FFFECH
Reserved by system	5	05	-	3E8H	000FFFE8н
Reserved by system	6	06	-	3E4н	000FFFFE4 ${ }_{\text {H }}$
Reserved by system	7	07	-	3E0н	000FFFFE0н
Reserved by system	8	08	-	3DCH	000FFFDCH
Reserved by system	9	09	-	3D8н	000FFFPD8н
Reserved by system	10	OA	-	3D4н	000FFFPD4н
Reserved by system	11	0B	-	3D0н	000FFFFD0н
Reserved by system	12	OC	-	ЗССн	000FFFCCH
Reserved by system	13	OD	-	3C8H	000FFFFC8
Undefined instruction exception	14	0E	-	3C4н	000FFFFC4н
NMI request	15	OF	$15 \text { (FH) }$ fixed	3 COH	000FFFFCOH
External interrupt 0	16	10	ICR00	3ВС ${ }_{\text {H }}$	000FFFBBC
External interrupt 1	17	11	ICR01	3B8H	000FFFFB8н
External interrupt 2	18	12	ICR02	3В4н	000FFFFB4 ${ }_{\text {н }}$
External interrupt 3	19	13	ICR03	3В0н	000FFFB0н
UART 0 reception complete	20	14	ICR04	ЗАСн	000FFFACH
UART 1 reception complete	21	15	ICR05	3А8н	000FFFA8н
UART 2 reception complete	22	16	ICR06	3А4н	000FFFA4 ${ }_{\text {н }}$
UART 0 transmission complete	23	17	ICR07	3A0H	000FFFAOн
UART 1 transmission complete	24	18	ICR08	39Сн	000FFF9Cн
UART 2 transmission complete	25	19	ICR09	398н	000FFF98н

(Continued)

Interrupt causes	Interrupt number		Interrupt level		TBR default Address*2
	Decimal	Hexadecimal	Register*1	Offset	
DMAC 0 (end, error)	26	1A	ICR10	394	000FFFF94
DMAC 1 (end, erro)	27	1B	ICR11	390н	000FFFF90н
DMAC 2 (end, erro)	28	1 C	ICR12	38 CH	000FFF8Cн
DMAC 3 (end, erro)	29	1D	ICR13	388н	000FFF88 ${ }_{\text {н }}$
DMAC 4 (end, erro)	30	1E	ICR14	384 ${ }^{\text {H}}$	000FFF844
DMAC 5 (end, erro)	31	1F	ICR15	380н	000FFFF80н
DMAC 6 (end, erro)	32	20	ICR16	$37 \mathrm{C}_{\mathrm{H}}$	$000 F F F 7{ }^{\text {ch }}$
DMAC 7 (end, erro)	33	21	ICR17	378	000FFF78 ${ }_{\text {н }}$
A/D (sequential type)	34	22	ICR18	374 ${ }^{\text {¢ }}$	000FFFF74
Reload timer 0	35	23	ICR19	370н	000FFFF70н
Reload timer 1	36	24	ICR20	36 CH	000FFF6CH
Reload timer 2	37	25	ICR21	368н	000FFF688
External interrupt 4	38	26	ICR22	364 ${ }^{\text {H}}$	000FFF64 ${ }_{\text {H }}$
External interrupt 5	39	27	ICR23	360н	000FFF66 ${ }_{\text {н }}$
Reserved by system	40	28	ICR24	$35 \mathrm{C}_{\mathrm{H}}$	000FFF5CH
Reserved by system	41	29	ICR25	358 ${ }^{\text {+ }}$	000FFFF58
U-TIMER 0	42	2A	ICR26	354 ${ }^{\text {H }}$	000FFF54 ${ }_{\text {H }}$
U-TIMER 1	43	2B	ICR27	350н	000FFFF50н
U-TIMER 2	44	2 C	ICR28	$34 \mathrm{C}_{\mathrm{H}}$	000FFF4CH
FLASH memory	45	2D	ICR29	348н	000FFFF48
Reserved by system	46	2E	ICR30	344 н	000FFFF44
Reserved by system	47	2 F	ICR31	340н	000FFFF40н
PPGO	48	30	ICR32	$33 \mathrm{C}_{\mathrm{H}}$	000FFF3CH
PPG1	49	31	ICR33	338	000FFFF38
PPG2	50	32	ICR34	334	000FFFF34
PPG3	51	33	ICR35	330н	000FFFF30н
ICU0 (capture)	52	34	ICR36	32 CH	000FFF2CH
ICU1 (capture)	53	35	ICR37	328H	000FFFF28н
ICU2 (capture)	54	36	ICR38	324 H	000FFF24 ${ }^{\text {¢ }}$
ICU3 (capture)	55	37	ICR39	320н	000FFFF20н

(Continued)
(Continued)

Interrupt causes	Interrupt number		Interrupt level		TBR default Address*2
	Decimal	Hexadecimal	Register*1	Offset	
OCU0 (match)	56	38	ICR40	31 CH	000 FFF 1 C н
OCU1 (match)	57	39	ICR41	318	000FFF18н
OCU2 (match)	58	3A	ICR42	314 H	000FFF14
OCU3 (match)	59	3B	ICR43	310 н	000FFF10н
Reserved by system	60	3C	ICR44	30 CH	000FFFOCн
16 bit free-run timer	61	3D	ICR45	308н	000FFF08н
Reserved by system	62	3E	ICR46	304 н	000FFFF04
Delay interrupt cause bit	63	3F	ICR47	300 +	000FFFO0н
Reserved by system (used by REALOS) *3	64	40	-	2FCH	000FFEFCH
Reserved by system (used by REALOS) *3	65	41	-	2F8н	000FFEF8н
Used by INT	$\begin{array}{r} 66 \\ \text { to } \\ 255 \end{array}$	$\begin{aligned} & \hline 42 \\ & \text { to } \\ & \text { FF } \end{aligned}$	-	$\begin{gathered} 2 \mathrm{~F} 4 \boldsymbol{H} \\ \text { to } \\ 000_{\mathrm{H}} \end{gathered}$	000FFEF4 to 000 FFCOOH

*1 : ICR specifies interrupt levels for interrupt requests, using the registers in interrupt controller. ICR is provided for each interrupt request.
*2 : TBR is a register that indicates a head address of the vector table for EIT.
An address that is found by adding offset values defined by TBR and EIT cause, is a vector address.
*3 : If REALOS/FR is used, 0×40 and 0×41 interrupts are used for system code.
Information : An 1 Kbyte area starting with an address indicated by TBR is the vector area for EIT. Size of the area for one vector is 4 byte. Relation between a vector number and a vector address is as follows:

$$
\begin{aligned}
\text { vctadr } & =\text { TBR }+ \text { vctofs } \\
& =T B R+\left(3 F C_{H}-4 \times v c t\right)
\end{aligned}
$$

Vctadr Vector address, vctofs: Vector offset, vct: Vector number

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Rating		Unit	Remarks	
		Min	Max			
Power supply voltage	Vcc	Vss - 0.3	Vss +4.0	V		
Analog supply voltage	AVcc	Vss - 0.3	Vss +4.0	V	*1	
Analog reference voltage	AVRH	Vss - 0.3	Vss +4.0	V	${ }^{*} 1$	
Input voltage	V_{1}	Vss - 0.3	$\mathrm{Vcc}+0.3$	V		
Analog input voltage	$\mathrm{V}_{\text {IA }}$	Vss - 0.3	Avcc + 0.3	V		
Output voltage	Vo	Vss - 0.3	V cc +0.3	V		
Maximum clamp current	Iclamp	-2.0	+2.0	mA	*5	
Total maximum clamp current	Σ \| Iclamp		-	20	mA	*5
"L" level maximum output current	loL	-	10	mA	*2	
"L" level average output current	lolav	-	4	mA	*3	
"L" level maximum total output current	Elo	-	100	mA		
"L" level average total output current	Elolav	-	50	mA	*4	
"H" level maximum output current	Іон	-	-10	mA	*2	
"H" level average output current	lohav	-	-4	mA	*3	
"H" level maximum total output current	Eloh	-	-50	mA		
"H" level average total output current	Elohav	-	-20	mA	*4	
Power consumption	Pd	-	500	mW		
Operating temperature	T_{A}	-30	+70	${ }^{\circ} \mathrm{C}$		
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$		

*1 : Care must be taken that AVcc, AVRH do not exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$. Also, care must be taken that AVRH do not exceed AVcc.
*2 : Maximum output current defines a peak value of a specific terminal.
*3 : Average output current defines a mean value of current flow within a period of 100 ms in a specific terminal.
*4 : Average total output current defines a mean value of current flow within a period of 100 ms in all terminals.
*5 : • Aplicable to pins : D16 to D31, A00 to A24, RDY, $\overline{\text { BGRNT, BRQ, } \overline{\mathrm{RD}}, \overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}, \overline{\mathrm{CS0}} \text { to } \overline{\mathrm{CS5}}, \mathrm{CLK}, \mathrm{OCPA} 0}$ to OCPA3, OC0 to OC3, ALE, INT0 to INT5, SIO, SI2, SO0, SO2, TCIO, SC2

- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.

MB91F127/F128

(Continued)

- The value of the limiting resistance should be set so that when the signal is applied the input current to the microcontroller pins does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the $+B$ input potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect other devices.
- Note that if a+B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power suplly is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the input pin open.
- Sample recommended circuits

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

$$
(\mathrm{V} s \mathrm{~s}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V})
$$

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply	V_{cc}	3.0	3.6	V	Normal operation Retain RAM data under "stop" condition
		Avcc	$\mathrm{V}_{\mathrm{ss}}-0.3$		V
Analog reference voltage	AVRH	AV ss	AV cc	V	
Operating temperature	T_{A}	-30	+70	${ }^{\circ} \mathrm{C}$	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91F127/F128

3. DC Characteristics

$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{Vss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"H" level input voltage	Vihs	Hysteresis input terminal	-	$0.8 \times \mathrm{Vcc}$	-	$\mathrm{Vcc}+0.3$	V	*
"L" level input voltage	Vıs	Hysteresis input terminal	-	Vss-0.3	-	$0.2 \times \mathrm{Vcc}$	V	*
"H" level output voltage	Vон	Port2 to PortJ	$\begin{aligned} & \mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
"L" level output voltage	VoL	Port2 to PortJ	$\begin{aligned} & \mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leak current	Iı	Port2 to PortJ	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{VI}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-	-	± 5	$\mu \mathrm{A}$	
Power supply current	Icc	VCC	$\begin{aligned} & 25 \mathrm{MHz} \\ & \mathrm{~V} \mathrm{cc}=3.3 \mathrm{~V} \end{aligned}$	-	75	100	mA	
	Icc		$\begin{aligned} & 25 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V} \end{aligned}$	-	85	120	mA	FLASH writing
	Iccs		$\begin{aligned} & 25 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V} \end{aligned}$	-	60	85	mA	Sleeping
	Ісch		$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V} \end{aligned}$	-	10	150	$\mu \mathrm{A}$	Stopping
Input capacity	Cin	Other than AVCC, AVSS, AVRH, VCC, VSS	-	-	10	-	pF	

* : Refer to "■ INPUT/OUTPUT CIRCUIT TYPE".

MB91F127/F128

4. AC Characteristics

(1) Clock Timing Ratings

Parameter		Symbol	Condition	Value		Unit	Remarks	
		Min		Max				
Clock frequency (High speed, automatic oscillation)			$f \mathrm{c}$	-	10	25	MHz	Self oscillation allowable range
Clock frequency (High speed, PLL used)		10			25	MHz	PLL-use allowable area for self oscillation and external clock input	
Clock frequency (High speed, 1/2 division input)		10			25	MHz	External clock input allowable range	
Clock cycle time		tc	40		100	ns		
Frequency regulation (when locked)		Δf	-		10	\%	*2	
Input clock pulse width		Рwн, PwL	-	9.5	-	ns		
Input clock rise and fall time		$\begin{aligned} & \hline \text { tcR } \\ & \text { tcF } \end{aligned}$	-	-	8	ns	(tcr + tcF)	
Internal operation clock frequency	$\begin{array}{\|l\|} \hline \text { CPU } \\ \text { system } \end{array}$	fcp	-	0.625 *3	25	MHz		
	Peripheral system	fcpp		0.625 *3	25	MHz		
Internal operation clock cycle time	$\begin{aligned} & \text { CPU } \\ & \text { system } \end{aligned}$	tcp		40	1600 *	ns		
	Peripheral system	tLCPP		40	1600 *	ns		

*1 : Although PLL allows selection among $x 1$ and $x 2$ multiplication modes, the selection is limited by oscillation frequency as follows:

Specifying "x2 multiplication" is not allowed if oscillation frequency exceeds 12.5 MHz .
*2 : Frequency regulation indicates a maximum fluctuation from a specified center frequency under locked frequency multiplication.

$$
\Delta f=\frac{|\alpha|}{f \circ} \times 100(\%)
$$

MB91F127/F128

*3 : This is a value in the case where 10 MHz signal, a minimum value of clock frequency, is input to $\mathrm{X0}$ and where 1/2-division in oscillation circuit and 1/8-gear are used.

MB91F127/F128

(2) Clock Output Timing

$$
\left(\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{AV} \mathrm{Vss}=\mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Cycle time	toyc	CLK	-	tcp	-	ns	*1
CLK $\uparrow \rightarrow$ CLK \downarrow	tchcı	CLK		1/2xtcyc - 10	$1 / 2 \times$ tcyc +10	ns	*2
CLK $\downarrow \rightarrow$ CLK \uparrow	tcıch	CLK		1/2xtcyc - 10	$1 / 2 \times$ tcrc +10	ns	* 3

*1 : tcyc is a frequency of 1 clock cycle indicating gear cycle.
*2 : The values indicate specifications where $\times 1$ gear cycle is used.
If gear cycle of $1 / 2,1 / 4$, or $1 / 8$ is specified, calculate in the formula below by substituting $1 / 2,1 / 4$, or $1 / 8$ into n . Min: $(1-n / 2) \times$ tcyc -10 Max: $(1-n / 2) \times$ tcyc +10
*3 : The values indicate specifications where x 1 gear cycle is used.
If gear cycle of $1 / 2,1 / 4$, or $1 / 8$ is specified, calculate in the formula below by substituting $1 / 2,1 / 4$, or $1 / 8$ into n.
Min: n/2 $2 \times$ tcyc -10
Max: $\mathrm{n} / 2 \times \operatorname{tcyc}+10$

Clock output timing
CLK
(3) Reset Input Ratings
$\left(\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Reset input time	trsti	RST	-	tcp $\times 5$	-	ns	

MB91F127/F128

(4) Power-on Reset

Parameter	Symbol	$\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$	Condition	$\left(\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$			
				Value		Unit	Remarks
				Min	Max		
Power supply rise time	tr_{R}	VCC	$\mathrm{Vcc}=3.3 \mathrm{~V}$	-	20	ms	$\mathrm{V}_{\mathrm{cc}}<0.2 \mathrm{~V}$ before turning on power
Power supply shut off time	toff	VCC	-	2	-	ms	
Oscillation stabilizing wait time	tosc	-	-	$\begin{gathered} 2 \times \mathrm{tc} \times 2^{21} \\ +100 \mu \mathrm{~s} \end{gathered}$	-	ns	

A sudden change of supply voltage may activate the power-on reset function. It is recommended that power voltage should be changed smoothly with less fluctuation of voltages.

Be sure to turn on the power while keeping $\overline{\mathrm{RST}}$ terminal at L level first. When the power becomes Vcc level, rise the voltage to H level after a period of trstL.

MB91F127/F128

(5) Normal Bus Access Read/Write Operation
$\left(\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
CS0 to CS5 delay time	tchcs	$\frac{\text { CLK }}{\text { CS0 to } \overline{\text { CS5 }}}$		-	15	ns	
CSO to CS5 delay time	tснСSH			-	15	ns	
Address delay time	tchav	$\begin{gathered} \text { CLK } \\ \text { A24 to A00 } \end{gathered}$		-	15	ns	
Data delay time	tchov	$\begin{gathered} \text { CLK } \\ \text { D31 to D16 } \end{gathered}$		-	15	ns	
$\overline{\mathrm{RD}}$ delay time	tclrL	CLK		-	15	ns	
$\overline{\mathrm{RD}}$ delay time	tclar	RD		-	15	ns	
$\overline{\mathrm{WRO}}, \overline{1}$ delay time	tclw	CLK		-	15	ns	
$\overline{\mathrm{WRO}}, \overline{1}$ delay time	tclwh	WRO, $\overline{1}$		-	15	ns	
Valid address \rightarrow Valid data input time	tavov	$\begin{aligned} & \hline \text { A24 to A00 } \\ & \text { D31 to D16 } \end{aligned}$		-	$3 / 2 \times$ tcyc - 25	ns	$\begin{aligned} & { }^{*} 1 \\ & { }^{2} 2 \end{aligned}$
$\overline{\mathrm{RD}} \downarrow \rightarrow$ Valid data input time	trLDv	$\begin{gathered} \overline{\mathrm{RD}} \\ \text { D31 to D16 } \end{gathered}$		-	tcyc - 25	ns	*1
$\begin{aligned} & \text { Data setup } \\ & \rightarrow \overline{\mathrm{RD} \uparrow \text { Time }} \end{aligned}$	tosph			25	-	ns	
RD $\uparrow \rightarrow$ Data hold time	trhdx			0	-	ns	

*1 : If the bus is expanded by automatic wait insertion or RDY input, add time (tcyc \times the number of expanded cycles) to the rated value.
*2 : The ratings are based on conditions with "gear cycle $\times 1$ ". If gear cycle of $1 / 2,1 / 4$, or $1 / 8$ is specified, calculate in the formula below by substituting $1 / 2,1 / 4$, or $1 / 8$ into n.
Formula: $(2-n / 2) \times$ tcyc -25

MB91F127/F128

MB91F127/F128

(6) Timeshared Bus Access Read/Write Operations
$\left(\mathrm{V} \mathrm{cc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
ALE delay time	tcLuн2	CLK	-	-	10	-	
ALE delay time	tclul2	ALE		-	10	-	
CS1 delay time	tchcst2	CLK		-	15	-	
$\overline{\text { CS1 }}$ delay time	tchcsh2	CS1		-	15	ns	
Address delay time	tchavz	CLK		-	15	ns	
Data delay time	tchov2	D31 to D16		-	15	ns	
$\overline{\mathrm{RD}}$ delay time	tclel2	CLK		-	10	ns	
$\overline{\mathrm{RD}}$ delay time	tclert	$\overline{\mathrm{RD}}$		-	10	ns	
$\overline{\text { WRO, }} \overline{1}$ delay time	tclwL2	CLK		-	10	ns	
$\overline{\mathrm{WRO}}, \overline{1}$ pulse width	tclwhz	$\frac{\text { WR0 }}{\text { WR1 }}$		-	10	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ Valid data input time	trlovz	$\begin{gathered} \overline{\mathrm{RD}} \\ \text { D31 to D16 } \end{gathered}$		-	tcyc - 25	-	*
$\xrightarrow{\text { Data setup }}$	tosRH2			25	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ Data hold time	trhoxz			0	-	ns	

* : If the bus is expanded by automatic wait insertion or RDY input, add time (tcyc x the number of expanded cycles) to the rated value.

MB91F127/F128

MB91F127/F128

(7) Ready Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
RDY setup time RCLK \downarrow	trovs	RDY CLK	-	15	-	ns	
CLK $\downarrow \rightarrow$ RDY hold time	trove	$\begin{aligned} & \text { CLK } \\ & \text { RDY } \end{aligned}$		0	-	ns	

MB91F127/F128

(8) Hold Timing

$$
\left(\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{Vss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
BGRNT delay time	tchbgl	$\frac{\text { CLK }}{\text { BGRNT }}$	-	-	10	ns	
$\overline{\text { BGRNT }}$ delay time	тснвян			-	10	ns	
Terminal floating $\rightarrow \overline{\mathrm{BGRNT}} \downarrow$ time	txhal	$\overline{\text { BGRNT }}$		tcyc - 10	tcyc +10	ns	
$\overline{\text { BGRNT } \uparrow}$ \rightarrow Terminal valid time	thatv			tcrc - 10	tcrc +10	ns	

Note : More than one cycle is required for BGRNT to change after BRQ is input.

(9) UART Timing
$\left(\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-30^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	-	Internal shift clock mode	8 tcycp*	-	ns	
SC $\downarrow \rightarrow$ SO delay time	tslov	-		-10	+50	ns	
Valid SI \rightarrow SC \uparrow	tivsh	-		50	-	ns	
SC $\uparrow \rightarrow$ Valid SI hold time	tshix	-		50	-	ns	
Serial clock "H" pulse width	tshsL	-	Externalshift clock mode	4 tcycp* - 10	-	ns	
Serial clock "L" pulse width	tsısh	-		4 tcrcp $^{*}-10$	-	ns	
SC $\downarrow \rightarrow$ SO delay time	tslov	-		0	50	ns	
Valid SI \rightarrow SC \uparrow	tivsh	-		50	-	ns	
SC $\uparrow \rightarrow$ Valid SI hold time	tshix	-		50	-	ns	
Serial busy time	teusy	-		-	6 tcycp*	ns	
CS $\downarrow \rightarrow$ SC, SO delay time	tclzo	-		-	50	ns	
CS $\downarrow \rightarrow$ SC input mask time	tcısı	-		-	3 tcycp*	ns	
SC $\uparrow \rightarrow$ SC, SO Hi-z time	tchoz	-	-	50	-	ns	

*: tcycp is a cycle time of peripheral system clock.

Internal shift clock mode

SC

External shift clock mode

MB91F127/F128

(10) Trigger Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Input pulse width	ttrgh ttrgl	ATG, INTO, 1, 2, 3 INT4, 5	-	5 tcycp*	-	ns	

* : tcycp is a cycle time of peripheral system clock.

MB91F127/F128

(11) A/D Converter Block Electrical Characteristics

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	10	10	BIT	
Total error	-	-	-	-	± 4.0	LSB	
Linearity error	-	-	-	-	± 3.5	LSB	
Differential linearity error	-	-	-	-	± 2.0	LSB	
Zero transition voltage	Vot	AN0 to AN7	$\begin{gathered} \hline \text { AVSS } \\ -1.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \text { AVSS } \\ +0.5 \mathrm{LSB} \end{gathered}$	$\begin{aligned} & \text { AVSS } \\ + & 2.5 \mathrm{LSB} \end{aligned}$	mV	
Full-scale transition voltage	Vfst	AN0 to AN7	$\begin{gathered} \hline \text { AVRH } \\ -5.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \hline \text { AVRH } \\ -1.5 \mathrm{LSB} \end{gathered}$	$\begin{gathered} \text { AVRH } \\ +0.5 \mathrm{LSB} \end{gathered}$	mV	
Conversion time	-	-	5.3	-	-	$\mu \mathrm{s}$	
Analog input current	Iain	AN0 to AN7	-	0.1	10	$\mu \mathrm{A}$	
Analog input voltage	V ${ }_{\text {AIN }}$	AN0 to AN7	AVss	-	AVRH	V	
Reference voltage	-	AVRH	AVss	-	AVcc	V	
Power supply current	I_{A}	AVCC	-	3.0	5.0	mA	
	ІА		-	-	5.0	$\mu \mathrm{A}$	
Reference voltage supply current	In	AVRH	-	100	150	$\mu \mathrm{A}$	
	ІRH		-	-	10	$\mu \mathrm{A}$	
Variation among channels	-	AN0 to AN7	-	-	4	LSB	

Notes : • Relatively, the errors increase as $|A V R H|$ value becomes smaller.

- Define an output impedance of external circuit analog input under the following conditions :

Output impedance of external circuit $\leq 2(\mathrm{k} \Omega)$
If an output impedance of external circuit is exceedingly high, sampling time for analog voltage may run short.

MB91F127/F128

Analog input circuit model diagram

MB91F127/F128

5. A/D Converter Block Electrical Characteristics

- Resolution

Analog variations recognized by an A/D converter.

- Linearity error

Deviation of actual conversion characteristics from an ideal line, which is across zero-transition point ("00 0000 0000 " $\leftarrow \rightarrow$ "00 0000 0001") and full-scale transition point ("11 11111110" $\leftarrow \rightarrow$ "11 1111 1111")

- Differential linearity error

Deviation from ideal value of input voltage, which is required for changing output code by 1 LSB.

- Total error

Difference between actual value and ideal value. The error includes zero-transition error, full-scale transition error, and linearity error.

1 LSB' ${ }^{\prime}$ (Ideal value $)=\frac{\mathrm{AVRH}-\mathrm{AV} \text { ss }}{1024} \quad[\mathrm{~V}]$

Total error of digital output $\mathrm{N}=\frac{\mathrm{V}_{\mathrm{NT}}-\{1 \mathrm{LSB} \times(\mathrm{N}-1)+0.5 \mathrm{LSB} \text { ' }\}}{1 \mathrm{LSB}^{\prime}}$
V_{NT} : Transition voltage for digital output to change from $(\mathrm{N}+1)$ to N .
Vot' (Ideal value) $=\mathrm{AV}$ ss +0.5 LSB' [V]
$\mathrm{V}_{\text {FST }}$ ' Ideal value) $=\mathrm{AVRH}-1.5 \mathrm{LSB}$ [$[\mathrm{V}]$

MB91F127/F128

(Continued)

Vот : Transition voltage for digital output to change from (000) н to (001) н.
$V_{\text {FSt }}$: Transition voltage for digital output to change from (3FE) н to (3FF)н.

■ FLASH MEMORY WRITE/ERASE CHARACTERISTICS

Parameter	Condition	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V} \mathrm{CC}=3.3 \mathrm{~V} \end{aligned}$	-	1	15	S	Not including time for internal writing before deletion.
Chip erase time		-	4	-	S	Not including time for internal writing before deletion.
Half byte (16 bit width) writing time		-	16	3600	$\mu \mathrm{s}$	Not including system-level overhead time.
Write/erase cycle	-	-	10,000	-	cycle	
Data holding time	-	-	100,000	-	h	

MB91F127/F128

EXAMPLE CHARACTERISTICS

- Power Supply Current

Power Supply Current (stopping)
vs. Power Supply Voltage

Power Supply Current (sleeping) vs. Power Supply Voltage

A/D Power Supply Current vs. Power Supply Voltage

A/D Reference Power Supply Current
vs. Power Supply Voltage

MB91F127/F128

- Output Voltage

MB91F127/F128

■ ORDERING INFORMATION

Part number	Package	Remarks
MB91F127PFV	100-pin plastic LQFP (FPT-100P-M05)	
MB91F128PFV	100-pin plastic LQFP (FPT-100P-M05)	

MB91F127/F128

PACKAGE DIMENSIONS

100-pin plastic LQFP
(FPT-100P-M05) (FPT-100P-M05)

*Pins width and pins thickness include plating thickness.

FUJITSU LIMITED

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

