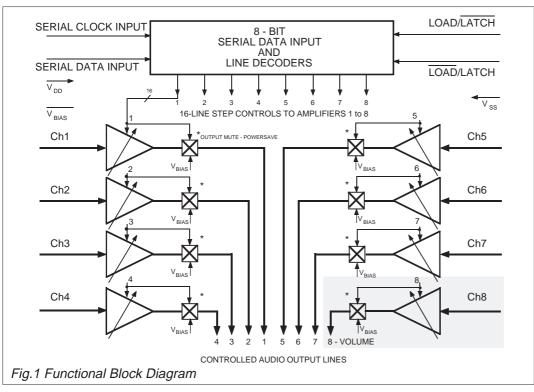


CML Semiconductor Products


PRODUCT INFORMATION

FX009A Low-Noise Digitally Controlled Amplifier Array

Publication D/009A/3 July 1994

Features/Applications

- 8 Digitally Controlled Low-Noise Amplifiers
- 15 Gain/Attenuation Steps
- ullet 7 Trimmers, with a \pm 3dB Range in 0.43dB Steps
- ullet 1 'Volume' Trimmer, with a \pm 14dB Range in 2.0dB Steps
- 8-Bit Serial Data Control
- Output Mute/Powersave Function
- Audio and Data Gain Control Applications
- Cellular, PMR, PABX Applications

Brief Description

The FX009A Digitally Adjustable Amplifier Array is intended to replace trimmer potentiometers and volume controls in Cellular, PMR, Telephony and Communications applications where d.c., voice or data signals need adjustment.

The FX009A is a low-noise single-chip LSI consisting eight digitally controlled amplifier stages, each with 15 distinct gain/attenuation steps. Control of each individual amplifier is by an 8-bit serial data stream. Seven of the amplifier stages offer a +/-3dB range in steps of 0.43dB, whilst the remaining amplifier offers a +/-14dB range in steps of 2dB, and is intended for volume control applications. Each amplifier includes a 16th 'Mute' state which sets the output to bias ($V_{\rm DD}/2$) and powersaves the entire section. Minimum current drain may be achieved by muting all eight sections.

This product replaces the need for manual trimming of audible signals by using the host microprocessor to digitally control the set-up of all audio levels.

Applications include:

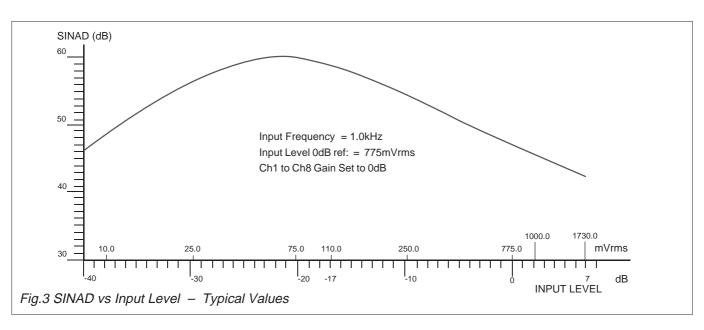
- (i) Control, adjustment and set-up of communications equipment by an Intelligent ATE without manual intervention eg. Deviation, Microphone and L/S Level. Rx Audio Level etc.
- (ii) Automatic Dynamic Compensation of drift caused by variations in temperature, linearity, etc.
- (iii) Fully automated servicing and re-alignment.

The FX009A is a low-power, single 5-volt CMOS device available in both 24-pin DIL and SMD package versions.

Pin Number Function

1 111 144		diction					
FX009A J	FX009A LG/LS						
1	1	Serial Clock : This external clock pulse input is used to "clock in" the Control Data. See Figure 4, Data Load Timing. This input has an internal $1M\Omega$ pullup resistor.					
2	2	Load/Latch : Governs the loading and execution of the control data. During serial data loading this input should be kept at a logical '0' to ensure that data rippling past the latches has no effect. When all 8 bits have been loaded, this input should be strobed '0' \Rightarrow '1' \Rightarrow '0' to latch the new data in. Data is executed on the falling edge of the strobe. If the Load/Latch input is used this pin should be left open circuit. This input has an internal $1M\Omega$ pullup resistor.					
3	3	Load/Latch : The inverted Load/Latch input. This function governs the loading and execution of the control data. During serial data loading this input should be kept at a logical '1' to ensure that data rippling past the latches has no effect. When all 8 bits have been loaded, this input should be strobed '1' - '0' - '1' to latch the new data in. Data is executed on the rising edge of the strobe. If the Load/Latch input is used this pin should be left open circuit. This input has an internal 1MΩ pulldown resistor.					
4	4	Ch1 Input : Analogue Inputs :					
5	5	These individual amplifier inputs are self-biasing, a.c. input analogue signals must be capacitively coupled to these pins,					
6	6	as shown in Figure 2. Ch3 Input : In the powersave modes the inputs are biased at $V_{DD}/2$.					
7	7	Ch4 Input: Note that amplifiers Ch1 to Ch8 are 'inverting amplifiers.'					
8	8	$V_{\rm BIAS}$: The output of the on-chip bias circuitry, held at $V_{\rm DD}/2$. This pin should be decoupled to $V_{\rm SS}$ as shown in Figure 2.					
9	9	Ch5 Input : Analogue Inputs :					
10	10	Ch6 Input:					
11	11	Ch7 Input :					
12	12	Ch8 Input:					
13	13	V _{ss} : Negative supply rail (GND).					
14	14	Ch8 Output : Analogue Outputs :					
15	15	Ch7 Output: The individual "Gain Controlled" amplifier outputs. Ch1 to Ch7 range from -3dB to +3dB in 0.43dB steps, Ch8					
16	16	Ch6 Output: could be utilized as a volume control, ranging from -14dB to +14dB in 2.0dB steps.					
17	17	Ch5 Output : In the powersave mode the selected output is biased at $V_{DD}/2$.					
18	18	No internal connection. Do not use.					
19	19	Ch4 Output : Analogue Outputs					
20	20	Ch3 Output: Note that amplifiers Ch1 to Ch8 are 'inverting amplifiers.'					
21	21	Ch2 Output :					
22	22	Ch1 Output :					
23	23	$\mathbf{V}_{\mathtt{DD}}$: Positive supply rail. A single +5-volt power supply is required.					
24	24	Control Data Input : Operation of the 8 amplifier channels (Ch1 – Ch8) is controlled by the 8 bits of data entered serially at this pin . The data is entered (bit 7 to bit 0) on the rising edge of the external Serial Clock. The data format is described in Tables 1, 2 and Figure 4. This input has an internal $1M\Omega$ pullup resistor.					

Application Notes



Application Recommendations

To avoid excess noise and instability in the final installation it is recommended that the following points be noted.

- (a) A noisy or badly regulated power supply can cause instability and/or variance of selected gains.
- (b) Care should be taken on the design and layout of the printed circuit board.
- (c) All external components (Figure 2) should be kept close to the FX009A package.
- (d) Inputs and outputs should be screened wherever possible.
- (e) Tracks should be kept short.

- (f) Analogue tracks should not run parallel to digital tracks.
- (g) A "Ground Plane" connected to $V_{\rm SS}$ will assist in eliminating external pick-up on the channel input and output pins.
- (h) Do not run high-level output tracks close to low-level input tracks.
- (i) Input signal amplitudes should be applied with due regard to Figure 3.

The gain of each amplifier block (Channel 1 to Channel 8) in the FX009A is set by a separate 8-bit data word (bit 7 to bit 0). This 8-bit word, consisting of 4 Address bits (bit 7 to bit 4) and 4 Gain Control bits (bit 3 to bit 0), is loaded to the Control Data Input in serial format using the external data clock.

Data is loaded to the FX009A on the rising edge of the Serial Clock. Loaded data is executed on the falling (rising) edge of the Load/Latch (Load/Latch) pulse. Table 1 shows the format of each 4-bit Address word, Table 2 shows the format of each Gain Control word with Figure 4 describing the data loading operation and timing.

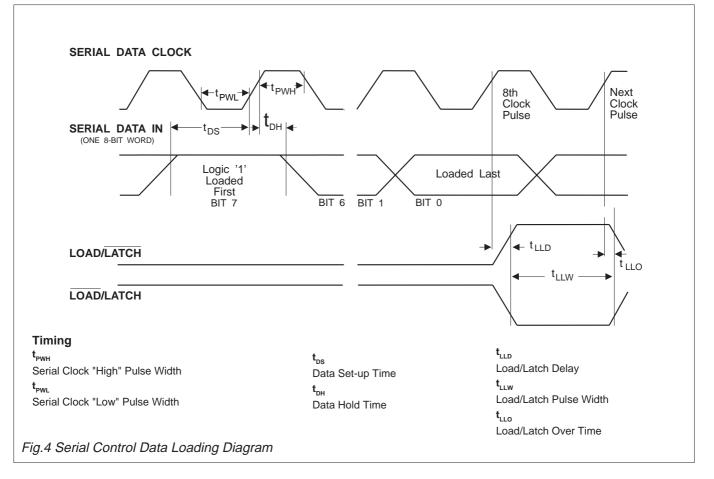

Table 1 Address Word Format						
Bit 7 MSB	Bit 6	Bit 5	Bit 4 LSB	Channel Selected		
1	0	0	0	1		
1	0	0	1	2		
1	0	1	0	3		
1	0	1	1	4		
1	1	0	0	5		
1	1	0	1	6		
1	1	1	0	7		
1	1	1	1	8		

Table 2 Gain Control Word Format								
Bit 3 MSB	Bit2	Bit 1	Bit 0 LSB	Stage 1 to 7 Stage (0.43dB) (2.0dB)		8		
0	0	0	0	Powersave	Powersave			
0	0	0	1	-3.0	-14.0	dB		
0	0	1	0	-2.571	-12.0	dΒ		
0	0	1	1	-2.143	-10.0	dB		
0	1	0	0	-1.714	-8.0	dΒ		
0	1	0	1	-1.286	-6.0 d			
0	1	1	0	-0.857	-4.0	dB		
0	1	1	1	-0.428	-2.0	dB		
1	0	0	0	0	0	dB		
1	0	0	1	0.428	2.0	dΒ		
1	0	1	0	0.857	4.0	dΒ		
1	0	1	1	1.286	6.0	dB		
1	1	0	0	1.714	8.0	dB		
1	1	0	1	2.143	10.0	dΒ		
1	1	1	0	2.571	12.0	dB		
1	1	1	1	3.0	14.0	dB		

Data Loading

The 8-bit data word is loaded *bit 7 first and bit 0* last. Bit 7 must be a logic "1" to address the chip.

If bit 7 in the word is a logic "0" that 8-bit word will not be executed. Figure 4 (below) shows the timing information required to load and operate this device.

Specification

Absolute Maximum Ratings

Exceeding the maximum rating can result in device damage. Operation of the device outside the operating limits is not implied.

Supply voltage -0.3 to 7.0V Input voltage at any pin (ref $V_{SS} = 0V$) -0.3 to $(V_{DD} + 0.3V)$ +/- 30mA Sink/source current (supply pins) +/- 20mA (other pins) Total device dissipation @ T_{AMB} 25°C 800mW Max.

Operating temperature range: FX009A J -30°C to +85°C (cerdip) FX009A LG/LS -30°C to +70°C (plastic) Storage temperature range: **FX009A J** -55°C to +125°C (cerdip)

FX009A LG/LS -40°C to +85°C (plastic)

10mW/°C

Operating Limits

All device characteristics are measured under the following conditions unless otherwise specified:

 $V_{DD} = 5.0 V$, $T_{AMB} = 25 ^{\circ} C$. Audio Level 0dB ref: = 775mVrms. Amplifier Gain Set = 0dB.

Supply Voltage (V _{po})	Characteristics		See Note	Min.	Тур.	Max.	Unit
Supply Current	Static Values						
- All Stages Quiescent - 0.16 - mA - All Stages Operating - 3.75 - mA Dynamic Values Control Functions Input Logic '1' 3.5 5 V Digital Input Impedances - 0.5 1.0 - MΩ Amplifier Stages (General) Bandwidth (-3dB)	Supply Voltage (V _{DD})			4.5	5.0	5.5	V
All Stages Operating							
Dynamic Values Control Functions Input Logic '1' 3.5 - - V Input Logic '1' 3.5 1.0 - MΩ MΩ Amplifier Stages (General) Single Input Impedances Single Input Impedance Single Input Impedanc	 All Stages Quiescent 			_	0.16	_	mA
Control Functions Input Logic '1' 3.5	 All Stages Operating 			_	3.75	_	mA
Input Logic '1'	Dynamic Values						
Input Logic '0'	Control Functions						
Digital Input Impedances 0.5 1.0 − MΩ Amplifier Stages (General) 8 andwidth (-3dB) 15.0 − − kHz Output Impedance − 0.8 3.0 kΩ Total Harmonic Distortion 1 − 0.35 0.5 % Output Noise Level (per stage) 2 − 65.0 − μVrms Onset of Clipping 3 − 1.73 − Vrms Gain Variation 4 − − 0.1 dB Interstage Isolation − 60.0 − dB "Trimmer" Stages (Ch1 − Ch7) Gain − 0.43 − dB Gain per Step (15 in No.) − − 0.43 − dB Input Impedance 100.0 − − kΩ Wolume" Stage (Ch8) − − ±0.4 dB Gain per Step (15 in No.) − − 2.0 − dB Step Error 5	Input Logic '1'			3.5	_	_	V
Amplifier Stages (General)				_	_	1.5	
Bandwidth (-3dB)				0.5	1.0	_	$M\Omega$
Output Impedance - 0.8 3.0 kΩ Total Harmonic Distortion 1 - 0.35 0.5 % Output Noise Level (per stage) 2 - 65.0 - μVrms Onset of Clipping 3 - 1.73 - Vrms Gain Variation 4 - - 0.1 dB Interstage Isolation - 60.0 - dB "Trimmer" Stages (Ch1 - Ch7) - 60.0 - dB Gain Per Step (15 in No.) - - 0.43 - dB Step Error 5 - - ±0.2 dB Input Impedance 100.0 - - kΩ Gain Per Step (15 in No.) - 2.0 - dB Step Error 5 - - ±0.4 dB Gain per Step (15 in No.) - 2.0 - dB Step Error 5 - - ±0.4	Amplifier Stages (General)						
Total Harmonic Distortion	Bandwidth (-3dB)			15.0	_	_	kHz
Output Noise Level (per stage) 2 - 65.0 - μVrms Onset of Clipping 3 - 1.73 - Vrms Gain Variation 4 - - 0.1 dB Interstage Interstag	Output Impedance			_	0.8	3.0	$k\Omega$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Total Harmonic Distortion		1	_	0.35	0.5	%
Gain Variation 4 - - 0.1 dB Interstage Isolation - 60.0 - dB "Trimmer" Stages (Ch1 - Ch7) Gain -3.0 +3.0 dB Gain per Step (15 in No.) - 0.43 - dB Step Error 5 - - ±0.2 dB Input Impedance 100.0 - - kΩ "Yolume" Stage (Ch8) Gain -14.0 +14.0 dB Gain per Step (15 in No.) - - 2.0 - dB Step Error 5 - - ±0.4 dB Input Impedance 50.0 - - kΩ Timing (Figure 4) Serial Clock "High" Pulse Width (t _{PWH}) 250 - - ns Serial Clock "Low" Pulse Width (t _{DS}) 150 - - ns Data Set-up Time (t _{LD}) 50 - - ns Load/Latch Over Time (t _{LLO}) - - - <t< td=""><td>Output Noise Level (per stage)</td><td></td><td>2</td><td>_</td><td>65.0</td><td>-</td><td>μVrms</td></t<>	Output Noise Level (per stage)		2	_	65.0	-	μ Vrms
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Onset of Clipping		3	_	1.73	_	Vrms
	Gain Variation		4	_	_	0.1	dB
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Interstage Isolation			_	60.0	_	dB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	"Trimmer" Stages (Ch1 – Ch7)						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gain			-3.0		+3.0	dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gain per Step (15 in No.)			_	0.43	_	dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Step Error		5	_	_	±0.2	dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Impedance			100.0	_	_	$k\Omega$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	"Volume" Stage (Ch8)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gain			-14.0		+14.0	dB
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Gain per Step (15 in No.)			_	2.0	_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Step Error		5	_	_	±0.4	dB
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Input Impedance			50.0	_	_	$k\Omega$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Timing (Figure 4)						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Serial Clock "High" Pulse Width	(t_{PWH})			_	_	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Serial Clock "Low" Pulse Width				_	_	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Data Set-up Time	(t_{DS})		150	_	_	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Data Hold Time	(t_{DH})		50	_	_	ns
Load/Latch Delay (t_{LLD}) 200 – – ns Load/Latch Pulse Width (t_{LLW}) 150 – – ns	Load/Latch Over Time			_	_	50.0	ns
Load/Latch Pulse Width (t_{LLW}) 150 – ns	Load/Latch Delay	(t _{11D})		200	_	_	ns
Serial Data Clock Frequency – 2.0 MHz	Load/Latch Pulse Width			150	_	_	ns
	Serial Data Clock Frequency	LL VV		_	_	2.0	MHz

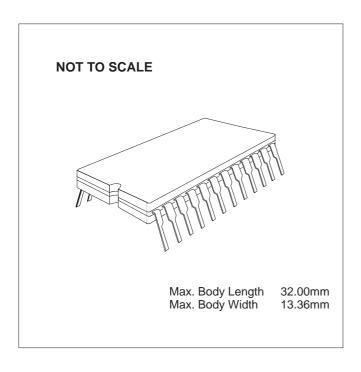
Notes

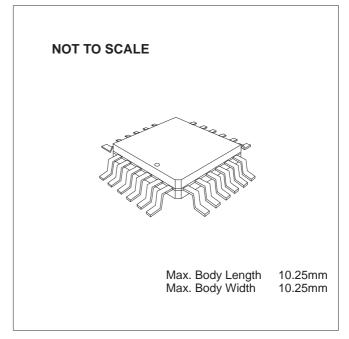
- 1. Gain Set 0dB, Input Level 1kHz -3.0dB (549mVrms).
- a.c short-circuit input, measured in a 30kHz bandwidth.
 See Figure 3.
- 4. Over temperature and supply voltage range.5. With reference to a 1.0kHz signal.

Package Outlines

The FX009A is available in the package styles outlined below. Mechanical package diagrams and specifications are detailed in Section 10 of this document.

Pin 1 identification marking is shown on the relevant diagrams and pins on all package styles number anticlockwise when viewed from the top.


Handling Precautions


The FX009A is a CMOS LSI circuit which includes input protection. However precautions should be taken to prevent static discharges which may cause damage.

FX009AJ 24-pin cerdip DIL

(J4)

FX009ALG 24-pin quad plastic encapsulated bent and cropped (L1)

FX009ALS 24-lead plastic leaded chip carrier

Ordering Information


FX009AJ 24-pin cerdip DIL (J4)

FX009ALG 24-pin quad plastic

encapsulated bent and cropped (L1)

FX009ALS 24-lead plastic leaded chip

carrier (L2)

CML does not assume any responsibility for the use of any circuitry described. No circuit patent licences are implied and CML reserves the right at any time without notice to change the said circuitry.

CML Product Data

In the process of creating a more global image, the three standard product semiconductor companies of CML Microsystems Plc (Consumer Microcircuits Limited (UK), MX-COM, Inc (USA) and CML Microcircuits (Singapore) Pte Ltd) have undergone name changes and, whilst maintaining their separate new names (CML Microcircuits (UK) Ltd, CML Microcircuits (USA) Inc and CML Microcircuits (Singapore) Pte Ltd), now operate under the single title CML Microcircuits.

These companies are all 100% owned operating companies of the CML Microsystems Plc Group and these changes are purely changes of name and do not change any underlying legal entities and hence will have no effect on any agreements or contacts currently in force.

CML Microcircuits Product Prefix Codes

Until the latter part of 1996, the differentiator between products manufactured and sold from MXCOM, Inc. and Consumer Microcircuits Limited were denoted by the prefixes MX and FX respectively. These products use the same silicon etc. and today still carry the same prefixes. In the latter part of 1996, both companies adopted the common prefix: CMX.

This notification is relevant product information to which it is attached.

Company contact information is as below:

COMMUNICATION SEMICONDUCTORS

Oval Park, Langford, Maldon, Essex, CM9 6WG, England Tel: +44 (0)1621 875500 Fax: +44 (0)1621 875600 uk.sales@cmlmicro.com www.cmlmicro.com

COMMUNICATION SEMICONDUCTORS

4800 Bethania Station Road, Winston-Salem, NC 27105, USA Tel: +1 336 744 5050,

0800 638 5577
Fax: +1 336 744 5054
us.sales@cmlmicro.com
www.cmlmicro.com

No 2 Kallang Pudding Road, 09-05/ 06 Mactech Industrial Building, Singapore 349307

Tel: +65 7450426 Fax: +65 7452917 sg.sales@cmlmicro.com www.cmlmicro.com