

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

FXL2TD245

Low Voltage Dual Supply 2-Bit Signal Translator with Configurable Voltage Supplies and Signal Levels and 3-STATE Outputs and Independent Direction Controls

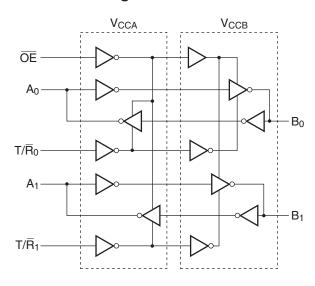
General Description

The FXL2TD245 is a configurable dual-voltage-supply translator designed for both uni-directional and bi-directional voltage translation between two logic levels. The device allows translation between voltages as high as 3.6V to as low as 1.1V. The A Port tracks the $V_{\rm CCA}$ level, and the B Port tracks the $V_{\rm CCB}$ level. This allows for bi-directional voltage translation over a variety of voltage levels: 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.

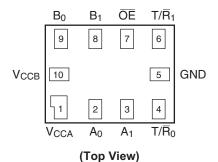
The device remains in 3-STATE until both V_{CC} s reach active levels allowing either V_{CC} to be powered-up first. Internal power down control circuits place the device in 3-STATE if either V_{CC} is removed.

The Transmit/Receive inputs independently determine the direction of data through each of the two bits. The $\overline{\text{OE}}$ input, when HIGH, disables both the A and B Ports by placing them in a 3-STATE condition. The FXL2TD245 is designed so that the control pins (T/ $\overline{\text{R}}$ and $\overline{\text{OE}}$) are supplied by V_{CCA} .

Features


- Bi-directional interface between any 2 levels from 1.1V to 3.6V
- Fully configurable: Inputs track V_{CC} level
- Non-preferential power-up sequencing; either V_{CC} may be powered-up first
- Outputs remain in 3-STATE until active V_{CC} level is reached
- Outputs switch to 3-STATE if either V_{CC} is at GND
- Power-off protection
- Control inputs (T/R̄_n, OĒ) levels are referenced to V_{CCA} voltage
- Packaged in the Chipscale MicroPak10 (1.6mm x 2.1mm)
- ESD protections exceeds:
 - 4kV HBM ESD (per JESD22-A114 & Mil Std 883e 3015.7)
 - 8kV HBM I/O to GND ESD (per JESD22-A114 & Mil Std 883e 3015.7)
 - 1kV CDM ESD (per ESD STM 5.3)
 - 200V MM ESD (per JESD22-A115 & ESD STM5.2)

Ordering Information


Order Number	Package Number	Pb-Free	Package Description				
FXL2TD245L10X	MAC010A	Yes	10-Lead MicroPak, 1.6mm x 2.1mm				

Pb-Free package per JEDEC J-STD-020B.

Functional Diagram

Connection Diagram

Pin Assignment

Pin Number	Terminal Name
1	V _{CCA}
2	A ₀
3	A ₁
4	T/R ₀
5	GND
6	T/R ₁
7	ŌĒ
8	B ₁
9	B ₀
10	V _{CCB}

Pin Descriptions

Pin Names	Description						
ŌĒ	Output Enable Input						
T/R _n	Transmit/Receive Inputs						
A _n	Side A Inputs or 3-STATE Outputs						
B _n	Side B Inputs or 3-STATE Outputs						
V _{CCA}	Side A Power Supply						
V _{CCB}	Side B Power Supply						

Truth Table

	Inputs	;							
ŌĒ	T/R ₀	T/R ₁	Outputs						
L	L	Х	B ₀ Data to A ₀ Output						
L	Н	Х	A ₀ Data to B ₀ Output						
L	Х	L	B ₁ Data to A ₁ Output						
L	Х	Н	A ₁ Data to B ₁ Output						
Н	Х	Х	3-STATE						

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Power-Up/Power-Down Sequencing

FXL translators offer an advantage in that either V_{CC} may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0 volts, outputs are in a HIGH-Impedance state. The control inputs $(T/\overline{R}_n$ and $\overline{OE})$ are designed to track the V_{CCA} supply. A pull-up resistor tying \overline{OE} to V_{CCA} should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/power-down. The size of the pull-up resistor is based upon the current-sinking capability of the \overline{OE} driver.

The recommended power-up sequence is the following:

- 1. Apply power to either V_{CC}.
- 2. Apply power to the T/\overline{R}_n inputs (Logic HIGH for A-to-B operation; Logic LOW for B-to-A operation) and to the respective data inputs (A Port or B Port). This may occur at the same time as Step 1.
- 3. Apply power to other V_{CC}.
- 4. Drive the OE input LOW to enable the device.

The recommended power-down sequence is the following:

- 1. Drive OE input HIGH to disable the device.
- 2. Remove power from either V_{CC}.
- 3. Remove power from other V_{CC}.

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Symbol	Parameter	Rating
V _{CCA} , V _{CCB}	Supply Voltage	-0.5V to +4.6V
V _I	DC Input Voltage I/O Port A I/O Port B Control Inputs (T/R n, OE)	-0.5V to +4.6V -0.5V to +4.6V -0.5V to +4.6V
Vo	Output Voltage ⁽¹⁾ Outputs 3-STATE Outputs Active (A _n) Outputs Active (B _n)	-0.5V to +4.6V -0.5V to V _{CCA} + 0.5V -0.5V to V _{CCB} + 0.5V
I _{IK}	DC Input Diode Current @ V _I < 0V	-50mA
I _{OK}	DC Output Diode Current @ V _O < 0V V _O > V _{CC}	-50mA +50mA
I _{OH} /I _{OL}	DC Output Source/Sink Current	-50mA / +50mA
I _{CC}	DC V _{CC} or Ground Current per Supply Pin	±100mA
T _{STG}	Storage Temperature Range	-65°C to +150°C

Recommended Operating Conditions⁽²⁾

Symbol	Parameter	Rating
V _{CCA} or V _{CCB}	Power Supply Operating	1.1V to 3.6V
	Input Voltage	
	Port A	0.0V to 3.6V
	Port B	0.0V to 3.6V
	Control Inputs $(T/\overline{R}_n, \overline{OE})$	0.0V to V _{CCA}
	Output Current in I _{OH} /I _{OL} with V _{CC @}	
	3.0V to 3.6V	±24mA
	2.3V to 2.7V	±18mA
	1.65V to 1.95V	±6mA
	1.4V to 1.65V	±2mA
	1.1V to 1.4V	±0.5mA
T _A	Free Air Operating Temperature	-40°C to +85°C
Δt/ΔV	Maximum Input Edge Rate V _{CCA/B} = 1.1V to 3.6V	10ns/V

Notes:

- 1. $I_{\rm O}$ Absolute Maximum Rating must be observed.
- 2. All unused inputs and input/output pins must be held at V_{CCI} or GND.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CCI} (V)	V _{CCO} (V)	Min.	Max.	Units
V _{IH}	High Level Input	Data Inputs A _n , B _n	2.7–3.6	1.1–3.6	2.0		V
	Voltage ⁽³⁾		2.3–2.7	1	1.6		
			1.65–2.3		0.65 x V _{CCI}		
			1.4–1.65		0.65 x V _{CCI}		
			1.1–1.4		0.9 x V _{CCI}		
		Control Pins \overline{OE} , T/\overline{R}_n	2.7–3.6	1.1–3.6	2.0		
		(Referenced to V _{CCA})	2.3–2.7		1.6		
			1.65–2.3		0.65 x V _{CCA}		
			1.4-1.65		0.65 x V _{CCA}		
			1.1–1.4		0.9 x V _{CCA}		
V _{IL}	Low Level Input	Data Inputs A _n , B _n	2.7–3.6	1.1–3.6		0.8	V
	Voltage ⁽³⁾		2.3–2.7			0.7	
			1.65–2.3			0.35 x V _{CCI}	
			1.4–1.65	1		0.35 x V _{CCI}	
			1.1–1.4	1		0.1 x V _{CCI}	
		Control Pins \overline{OE} , T/\overline{R}_n	2.7–3.6	1.1–3.6		0.8	
		(Referenced to V _{CCA})	2.3–2.7	1		0.7	
			1.65–2.3			0.35 x V _{CCA}	
			1.4–1.65			0.35 x V _{CCA}	
			1.1–1.4			0.1 x V _{CCA}	
V _{OH}	High Level Output	I _{OH} = -100μA	1.1–3.6	1.1–3.6	V _{CC0} -0.2	00/1	V
	Voltage ⁽⁴⁾	I _{OH} = -12mA	2.7	2.7	2.2		
		I _{OH} = -18mA	3.0	3.0	2.4		
		I _{OH} = -24mA	3.0	3.0	2.2		
		I _{OH} = -6mA	2.3	2.3	2.0		
		I _{OH} = -12mA	2.3	2.3	1.8		
		I _{OH} = -18mA	2.3	2.3	1.7		
		$I_{OH} = -6mA$	1.65	1.65	1.25		
		I _{OH} = -2mA	1.4	1.4	1.05		
		I _{OH} = -0.5mA	1.1	1.1	0.75 x V _{CC0}		
V _{OL}	Low Level Output	$I_{OL} = 100 \mu A$	1.1–3.6	1.1- 3.6	000	0.2	V
OL	Voltage ⁽⁴⁾	I _{OL} = 12mA	2.7	2.7		0.4	
		I _{OL} = 18mA	3.0	3.0		0.4	
		I _{OL} = 24mA	3.0	3.0		0.55	
		I _{OL} =12mA	2.3	2.3		0.4	
		I _{OL} = 18mA	2.3	2.3		0.6	
		$I_{OL} = 6mA$	1.65	1.65		0.3	
		$I_{OL} = 2mA$	1.4	1.4		0.35	
		$I_{OL} = 0.5 \text{mA}$	1.1	1.1		0.3 x V _{CC0}	
I _I	Input Leakage Current Control Pins	$V_I = V_{CCA}$ or GND	1.1–3.6	3.6		±1.0	μА

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	V _{CCI} (V)	V _{CCO} (V)	Min.	Max.	Units
I _{OFF}	Power Off Leakage	A_n , V_I or $V_O = 0V$ to 3.6V	0	3.6		±10.0	μА
	Current	B_n , V_I or $V_O = 0V$ to 3.6V	3.6	0		±10.0]
l _{oz}	3-STATE Output	$A_n, B_n \overline{OE} = V_{IH}$	3.6	3.6		±10.0	μА
	Leakage ⁽⁵⁾ 0 ≤ V _O ≤ 3.6V	B_n , \overline{OE} = Don't Care	0	3.6		+10.0	1
	$V_I = V_{IH} \text{ or } V_{IL}$	A_n , $\overline{OE} = Don't Care$	3.6	0		+10.0	
I _{CCA/B}	Quiescent Supply Current ⁽⁶⁾	$V_I = V_{CCI}$ or GND; $I_O = 0$	1.1–3.6	1.1–3.6		20.0	μА
I _{CCZ}	Quiescent Supply Current ⁽⁶⁾	$V_I = V_{CCI}$ or GND; $I_O = 0$	1.1–3.6	1.1–3.6		20.0	μА
I _{CCA}	Quiescent Supply	$V_I = V_{CCA}$ or GND; $I_O = 0$	0	1.1–3.6		-10.0	μА
	Current	$V_I = V_{CCA}$ or GND; $I_O = 0$	1.1–3.6	0		10.0	μА
I _{CCB}	Quiescent Supply	$V_I = V_{CCB}$ or GND; $I_O = 0$	1.1–3.6	0		-10.0	μА
	Current	$V_I = V_{CCB}$ or GND; $I_O = 0$	0	1.1–3.6		10.0	μА
ΔI _{CCA/B}	Increase in I _{CC} per Input; Other Inputs at V _{CC} or GND	V _{IH} = 3.0	3.6	3.6		500	μА

Notes:

- 3. V_{CCI} = the V_{CC} associated with the data input under test.
- 4. V_{CCO} = the V_{CC} associated with the output under test.
- 5. Don't Care = Any valid logic level.
- 6. Reflects current per supply, V_{CCA} or V_{CCB} .

AC Electrical Characteristics

$V_{CCA} = 3.0V$ to 3.6V

					T _A	= -40 °C	C to +85	5°C				
			V _{CCB} = 3.0V to 3.6V		V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		V _{CCB} = 1.4V to 1.6V		V _{CCB} = 1.1V to 1.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.2	3.5	0.3	3.9	0.5	5.4	0.6	6.8	1.4	22.0	ns
	Propagation Delay B to A	0.2	3.5	0.2	3.8	0.3	4.0	0.5	4.3	0.8	13.0	
t _{PZH} , t _{PZL}	Output Enable OE to B	0.5	4.0	0.7	4.4	1.0	5.9	1.0	6.4	1.5	17.0	ns
	Output Enable OE to A	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	0.5	4.0	
t _{PHZ} , t _{PLZ}	Output Disable OE to B	0.2	3.8	0.2	4.0	0.7	4.8	1.5	6.2	2.0	17.0	ns
	Output Disable OE to A	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	0.2	3.7	

$V_{\text{CCA}} = 2.3V \text{ to } 2.7V$

			$T_A = -40$ °C to $+85$ °C											
			-		V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		V _{CCB} = 1.4V to 1.6V		V _{CCB} = 1.1V to 1.3V			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units		
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.2	3.8	0.4	4.2	0.5	5.6	0.8	6.9	1.4	22.0	ns		
	Propagation Delay B to A	0.3	3.9	0.4	4.2	0.5	4.5	0.5	4.8	1.0	7.0			
t _{PZH} , t _{PZL}	Output Enable OE to B	0.6	4.2	0.8	4.6	1.0	6.0	1.0	6.8	1.5	17.0	ns		
	Output Enable OE to A	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5	0.6	4.5			
t _{PHZ} , t _{PLZ}	Output Disable OE to B	0.2	4.1	0.2	4.3	0.7	4.8	1.5	6.7	2.0	17.0	ns		
	Output Disable OE to A	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0	0.2	4.0			

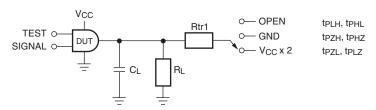
$V_{CCA} = 1.65V \text{ to } 1.95V$

			$T_{\Delta} = -40^{\circ}\text{C to } +85^{\circ}\text{C}$											
		V _{CCB} = 3.0V to 3.6V		V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		V _{CCB} =		V _{CCB} =				
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units		
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.3	4.0	0.5	4.5	0.8	5.7	0.9	7.1	1.5	22.0	ns		
	Propagation Delay B to A	0.5	5.4	0.5	5.6	0.8	5.7	1.0	6.0	1.2	8.0			
t _{PZH} , t _{PZL}	Output Enable OE to B	0.6	5.2	0.8	5.4	1.2	6.9	1.2	7.2	1.5	18.0	ns		
	Output Enable OE to A	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	1.0	6.7	ĺ		
t _{PHZ} , t _{PLZ}	Output Disable OE to B	0.2	5.1	0.2	5.2	0.8	5.2	1.5	7.0	2.0	17.0	ns		
	Output Disable OE to A	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	ĺ		

AC Electrical Characteristics (Continued)

$V_{CCA} = 1.4V$ to 1.6V

					T _A	= -40 °C	C to +85	5°C				
			V _{CCB} = 3.0V to 3.6V		V _{CCB} = 2.3V to 2.7V		V _{CCB} = 1.65V to 1.95V		V _{CCB} = 1.4V to 1.6V		V _{CCB} = 1.1V to 1.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.5	4.3	0.5	4.8	1.0	6.0	1.0	7.3	1.5	22.0	ns
	Propagation Delay B to A	0.6	6.8	0.8	6.9	0.9	7.1	1.0	7.3	1.3	9.5	
t _{PZH} , t _{PZL}	Output Enable OE to B	1.1	7.5	1.1	7.6	1.3	7.7	1.4	7.9	2.0	20.0	ns
	Output Enable OE to A	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	1.0	7.5	
t _{PHZ} , t _{PLZ}	Output Disable OE to B	0.4	6.1	0.4	6.2	0.9	6.2	1.5	7.5	2.0	18.0	ns
	Output Disable OE to A	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	1.0	6.0	

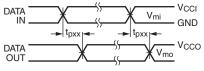

$V_{CCA} = 1.1V$ to 1.3V

			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$									
			_{CB} = o 3.6V	V _{C0}	_{CB} = o 2.7V	1.65	_{CB} = V to 95V		c _B = o 1.6V	V _C (_{CB} = o 1.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PLH} , t _{PHL}	Propagation Delay A to B	0.8	13.0	1.0	7.0	1.2	8.0	1.3	9.5	2.0	24.0	ns
	Propagation Delay B to A	1.4	22.0	1.4	22.0	1.5	22.0	1.5	22.0	2.0	24.0	
t _{PZH} , t _{PZL}	Output Enable OE to B	1.0	12.0	1.0	9.0	2.0	10.0	2.0	11.0	2.0	24.0	ns
	Output Enable OE to A	2.0	22.0	2.0	22.0	2.0	22.0	2.0	22.0	2.0	22.0	
t _{PHZ} , t _{PLZ}	Output Disable OE to B	1.0	15.0	0.7	7.0	1.0	8.0	2.0	10.0	2.0	20.0	ns
	Output Disable OE to A	2.0	15.0	2.0	12.0	2.0	12.0	2.0	12.0	2.0	12.0	

Capacitance

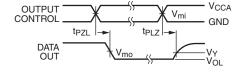
			$T_A = +25^{\circ}C$	
Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance Control Pins (OE, T/Rn)	$V_{CCA} = V_{CCB} = 3.3V$, $V_I = 0V$ or $V_{CCA/B}$	4.0	pF
C _{I/O}	Input/Output Capacitance A _n , B _n Ports	$V_{CCA} = V_{CCB} = 3.3V$, $V_I = 0V$ or $V_{CCA/B}$	5.0	pF
C _{PD}	Power Dissipation Capacitance	$V_{CCA} = V_{CCB} = 3.3V$, $V_I = 0V$ or V_{CC} , $F = 10MHz$	20.0	pF

AC Loading and Waveforms



Test	Switch
t _{PLH} , t _{PHL}	OPEN
t _{PLZ} , t _{PZL}	$V_{CCO} \ x \ 2 \ \text{at} \ V_{CCO} = 3.3 \pm 0.3 \text{V}, \ 2.5 \text{V} \pm 0.2 \text{V}, \\ 1.8 \text{V} \pm 0.15 \text{V}, \ 1.5 \text{V} \pm 0.1 \text{V}, \ 1.2 \text{V} \pm 0.1 \text{V}$
t _{PHZ} , t _{PZH}	GND

Figure 1. AC Test Circuit


AC Load Table

V _{cco}	C _L	R _L	Rtr1
1.2V ± 0.1V	15pF	2kΩ	2kΩ
1.5V ± 0.1V	15pF	2kΩ	2kΩ
1.8V ± 0.15V	15pF	2kΩ	2kΩ
2.5V ± 0.2V	15pF	2kΩ	2kΩ
3.3V ± 0.3V	15pF	2kΩ	2kΩ

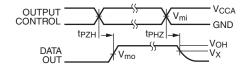

Input $t_R=t_F=2.0$ ns, 10% to 90% Input $t_R=t_F=2.5 ns,$ 10% to 90%, @ $V_I=3.0 V$ to 3.6V only

Figure 2. Waveform for Inverting and Non-Inverting Functions

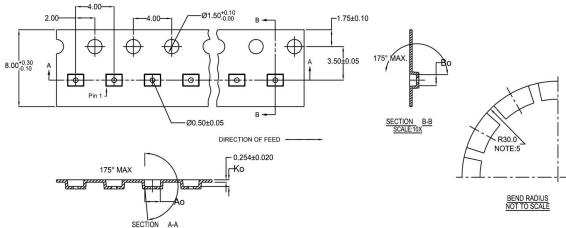
Input $t_R=t_F=2.0$ ns, 10% to 90% Input $t_R=t_F=2.5$ ns, 10% to 90%, @ $V_I=3.0V$ to 3.6V only

Figure 3. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

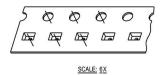
Input $t_R = t_F = 2.0$ ns, 10% to 90% Input $t_R = t_F = 2.5$ ns, 10% to 90%, @ $V_I = 3.0$ V to 3.6V only

Figure 4. 3-STATE Output High Enable and Disable Times for Low Voltage Logic

	V _{CC}							
Symbol	$\textbf{3.3V} \pm \textbf{0.3V}$	$\textbf{2.5V} \pm \textbf{0.2V}$	1.8V ± 0.15V	1.5V ± 0.1V	1.2V ± 0.1V			
V _{mi}	V _{CCI} /2	V _{CCI} /2	V _{CCI} /2	V _{CCI} /2	V _{CCI} /2			
V _{mo}	V _{CCO} /2	V _{CCO} /2	V _{CCO} /2	V _{CCO} /2	V _{CCO} /2			
V _X	V _{OH} -0.3V	V _{OH} -0.15V	V _{OH} -0.15V	V _{OH} -0.1V	V _{OH} -0.1V			
V _Y	V _{OL} +0.3V	V _{OL} +0.15V	V _{OL} +0.15V	V _{OL} +0.1V	V _{OL} +0.1V			

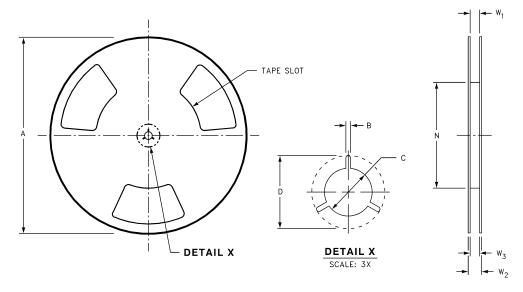

For V_{mi} : $V_{CCI} = V_{CCA}$ for Control Pins T/\overline{R} and \overline{OE} , or $V_{CCA}/2$

Tape and Reel Specification

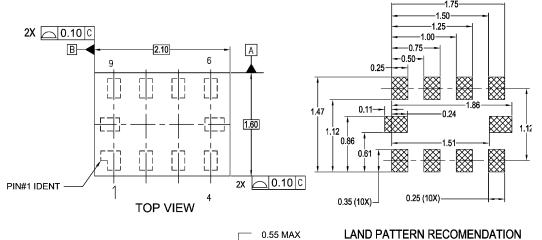

Tape Format for MicroPak 10

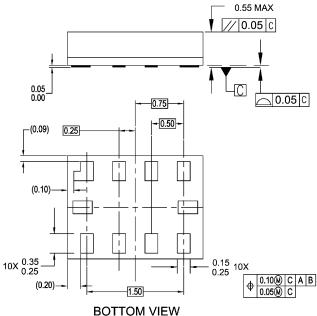
Package Designator	Tape Section	Number Cavities	Cavity Status	Cover Tape Status
L10X	Leader (Start End)	125 (typ)	Empty	Sealed
	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

Tape Dimensions inches (millimeters)


10	300056	2.30±0.05	1.78±0.05	0.68 ± 0.05
8	300038	1.78±0.05	1.78±0.05	0.68 ± 0.05
6	300033	1.60 ± 0.05	1.15±0.05	0.70 ± 0.05

NOTES: UNLESS OTHERWISE SPECIFIED


- 1. ACCUMULATED 50 SPROCKETS, SPROCKET HOLE PITCH IS 200.00 ±0.30MM
- 2. NO INDICATED CORNER RADIUS IS 0.127MM
- 3. CAMBER NOT TO EXCEED 1MM IN 100MM
- 4. SMALLEST ALLOWABLE BENDING RADIUS
- 5. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE


MicroPak 10 Reel Dimensions inches (millimeters)

Tape Size	Α	В	С	D	N	W1	W2	W3
8 mm	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039W
	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)

Physical Dimensions inches (millimeters) unless otherwise noted

NOTES:

- A. PACKAGE CONFORMS TO JEDEC MO255, VARIATION UABD
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES CONFORMS TO ASME Y14.5M, 1994.

MAC010ARevC

Pb-Free 10-Lead MicroPak, 1.6mm x 2.1mm Package Number MAC010A

FAIRCHILD SEMICONDUCTOR TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SILENT SWITCHER® ACEx™ FACT Quiet Series™ OCX^{TM} UniFET™ $Active Array^{TM}$ UltraFET® GlobalOptoisolator™ $OCXPro^{TM}$ SMART START™ OPTOLOGIC® Bottomless™ GTO™ SPM™ VCX™ Build it Now™ HiSeC™ OPTOPLANAR™ Stealth™ Wire™ $\mathsf{CoolFET}^{\mathsf{TM}}$ I²CTM $PACMAN^{TM}$ SuperFET™ $CROSSVOLT^{\mathsf{TM}}$ SuperSOT™-3 i-Lo™ РОР™

 $\mathsf{DOME}^{\mathsf{TM}}$ $Implied Disconnect^{\mathsf{TM}}$ Power247™ SuperSOT™-6 SuperSOT™-8 EcoSPARK™ IntelliMAX™ PowerEdge™ E²CMOS™ ISOPLANAR™ PowerSaver™ SyncFET™ EnSigna™ LittleFET™ PowerTrench® $\mathsf{TCM}^{\mathsf{TM}}$ QFET® MICROCOUPLER™ TinyBoost™ FACT® $\mathsf{FAST}^{\circledR}$ MicroFET™ QSTM TinyBuck™ $\mathsf{Tiny}\mathsf{PWM}^{\mathsf{TM}}$ FASTr™ MicroPak™ QT Optoelectronics™ TinyPower™ $\mathsf{FPS^{\mathsf{TM}}}$ MICROWIRE™ Quiet Series™ TinyLogic[®] RapidConfigure™ $\mathsf{FRFET}^\mathsf{TM}$ MSX^{TM} TINYOPTO™

MSXProTM RapidConnectTM TINYOPTOTM Across the board. Around the world. TM $\mu SerDes^{TM}$ TruTranslation TM

The Power Franchise[®] ScalarPump[™] UHC[®]

Programmable Active Droop™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative