GBJ20005 THRU GBJ2010

GLASS PASSIVATED SINGLE-PHASE BRIDGE RECTIFIER

REVERSE VOLTAGE: 50 to 1000 VOLTS FORWARD CURRENT: 20.0 AMPERE

FEATURES

· Glass passivated chip junction

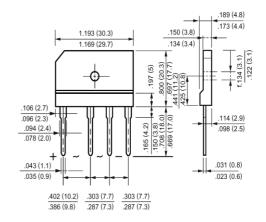
· Reliable low cost construction utilizing molded plastic technique

· Ideal for printed circuit board

· Low forward voltage drop

· Low reverse leakage current

· High surge current capability


MECHANICAL DATA

Case: Molded plastic, GBJ

Epoxy: UL 94V-O rate flame retardant

Terminals: Leads solderable per MIL-STD-202,

method 208 guaranteed Mounting position: Any Weight: 0.23ounce, 6.6gram GBJ

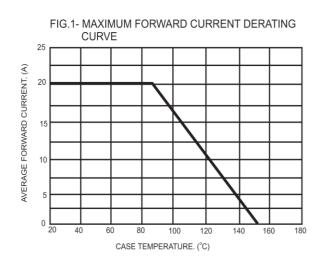
Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Ratings at 25 ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, resistive or inductive load.

For capacitive load, derate current by 20%.


	Symbols	GBJ20005	GBJ2001	GBJ2002	GBJ2004	GBJ2006	GBJ2008	GBJ2010	Units
Maximum Recurrent Peak Reverse Voltage	V_{RRM}	50	100	200	400	600	800	1000	Volts
Maximum RMS Voltage	V_{RMS}	35	70	140	280	420	560	700	Volts
Maximum DC Blocking Voltage	V _{DC}	50	100	200	400	600	800	1000	Volts
Maximum Average Forward Rectified Current with Heatsink at T_C =90	I _(AV)	20.0							Amp
Peak Forward Surge Current, 8.3ms single half-sine-wave superimposed on rated load (JEDEC method)	I _{FSM}	250							Amp
Maximum Forward Voltage Drop per Element at 10.0A DC and 25	$V_{\rm F}$	1.05							Volts
Maximum Reverse Current at T _A =25 at Rated DC Blocking Voltage T _A =125	I_R	10.0 500							uAmp
Typical Junction Capacitance (Note 1)	C_{J}	60							pF
Typical Thermal Resistance (Note 2)	$R_{\theta JC}$	0.8							/W
Operating and Storage Temperature Range	T _J , Tstg	-55 to +150							

NOTES:

- 1- Measured at 1 MHz and applied reverse voltage of 4.0 VDC.
- 2- Thermal Resistance from Junction to Case with Device Mounted on 300mm x 300mm x 1.6mmCu Plate Heatsink.

RATINGS AND CHARACTERISTIC CURVES

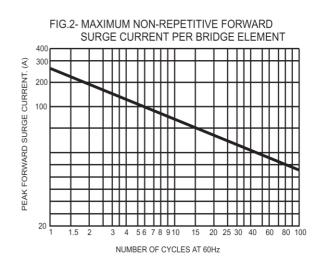
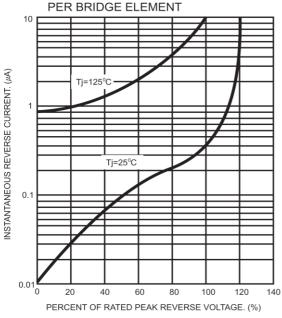
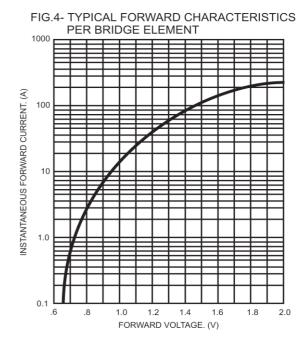
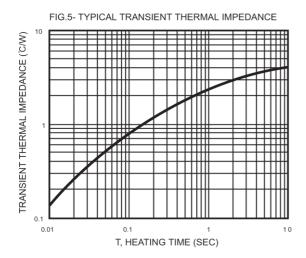





FIG.3- TYPICAL REVERSE CHARACTERISTICS
PER BRIDGE FLEMENT

