12MHz, High Input Impedance, Operational Amplifier

HA-2505 is an operational amplifier whose design is optimized to deliver excellent slew rate, bandwidth, and settling time specifications. The outstanding dynamic features of this internally compensated device are complemented with low offset voltage and offset current.

This dielectrically isolated amplifier is ideally suited for applications such as data acquisition, RF, video, and pulse conditioning circuits. Slew rates of $\pm 30 \mathrm{~V} / \mu \mathrm{s}$ and 330 ns (0.1%) settling time make this device an excellent component in fast, accurate data acquisition and pulse amplification designs. 12 MHz small signal bandwidth and 500 kHz power bandwidth make this device well suited to RF and video applications. With 2 mV typical offset voltage plus offset trim capability and $10 n A$ offset current, HA-2505 is particularly useful in signal conditioning designs.

The gain and offset voltage figures of the HA-2505 are optimized by internal component value changes while the similar design of the HA-2515 is maximized for slew rate.
MIL-STD-883 product and data sheets are available upon request.

Part Number Information

PART NUMBER	TEMP RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
HA3-2505-5	0 to 75	8 Ld PDIP	E8.3

Features

- Slew Rate. 30V/ $\mu \mathrm{s}$
- Fast Settling 330ns
- Full Power Bandwidth . 500kHz
- Gain Bandwidth . 12 MHz
- High Input Impedance . $50 \mathrm{M} \Omega$
- Low Offset Current. 10nA
- Internally Compensated For Unity Gain Stability

Applications

- Data Acquisition Systems
- RF Amplifiers
- Video Amplifiers
- Signal Generators

Pinot

HA-2505 (PDIP)

TOP VIEW

Schematic

Absolute Maximum Ratings

Supply Voltage Between V+ and V- Terminals 40V
Differential Input Voltage . 15V
Peak Output Current . 50mA

Operating Conditions

Temperature Range HA-2505-5 . $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package	96
Maximum Junction Temperature (Plastic Package)	$150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s)	$300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

PARAMETER	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	HA-2505-5			UNITS
		MIN	TYP	MAX	
INPUT CHARACTERISTICS					
Offset Voltage	25	-	4	8	mV
	Full	-	-	10	mV
Offset Voltage Average Drift	Full	-	20	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	25	-	125	250	nA
	Full	-	-	500	nA
Offset Current	25	-	20	50	nA
	Full	-	-	100	nA
Input Resistance (Note 2)	25	20	50	-	$\mathrm{M} \Omega$
Common Mode Range	Full	± 10	-	-	V
TRANSFER CHARACTERISTICS					
Large Signal Voltage Gain (Notes 3, 6)	25	15	25	-	kV/V
	Full	10	-	-	kV/V
Common Mode Rejection Ratio (Note 4)	Full	74	90	-	dB
Gain Bandwidth Product (Note 5)	25	-	12	-	MHz
OUTPUT CHARACTERISTICS					
Output Voltage Swing (Note 3)	Full	± 10	± 12	-	V
Output Current (Note 6)	25	± 10	± 20	-	mA
Full Power Bandwidth (Notes 6, 11)	25	300	500	-	kHz
TRANSIENT RESPONSE					
Rise Time (Notes 3, 7, 8, 9)	25	-	25	50	ns
Overshoot (Notes 3, 7, 8, 9)	25	-	25	50	\%
Slew Rate (Notes 3, 7, 9, 12)	25	± 20	± 30	-	V/us
Setting Time to 0.1\% (Notes 3, 7, 9, 12)	25	-	0.33	-	$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS					
Supply Current	25	-	4	6	mA
PSRR (Note 10)	Full	74	90	-	dB

NOTES:

2. This parameter value is based on design calculations.	8. $\mathrm{V}_{\mathrm{O}}= \pm 200 \mathrm{mV}$.
3. $R_{L}=2 k \Omega$.	9. See Transient Response Test Circuits and Waveforms.
4. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$.	10. $\Delta \mathrm{V}= \pm 5 \mathrm{~V}$.
5. $A_{V}>10$.	11. Full Power Bandwidth guaranteed based on slew rate measurement
6. $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$.	using: FPBW = Slew Rate/ $2 \pi \mathrm{~V}_{\text {PEAK }}$.
7. $C_{L}=50 \mathrm{pF}$.	12. $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$.

Test Circuits and Waveforms

FIGURE 1. SLEW RATE AND SETTLING TIME

FIGURE 3. SLEW RATE AND TRANSIENT RESPONSE

13. $\mathrm{A}_{\mathrm{V}}=-1$.
14. Feedback and Summing Resistor Ratios should be 0.1% matched.
15. Clipping Diodes CR_{1} and CR_{2} are optional. HP5082-2810 recommended.

FIGURE 5. SETTLING TIME TEST CIRCUIT

NOTE: Measured on both positive and negative transitions from 0 V to +200 mV and 0 V to -200 mV at the output.

FIGURE 2. TRANSIENT RESPONSE

$$
\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}
$$ Upper Trace: Input Lower Trace: Output

Vertical $=5 \mathrm{~V} /$ Div. Horizontal $=200 \mathrm{~ns} /$ Div. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

FIGURE 4. VOLTAGE FOLLOWER PULSE RESPONSE

NOTE: Tested offset adjustment range is $\left|\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mV}\right|$ minimum referred to output. Typical ranges are $\pm 6 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=20 \mathrm{k} \Omega$.

FIGURE 6. SUGGESTED VOS ADJUSTMENT AND COMPENSATION HOOK UP

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 7. INPUT BIAS AND OFFSET CURRENT vs TEMPERATURE

FIGURE 9. NORMALIZED AC PARAMETERS vs TEMPERATURE

FIGURE 11. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE

FIGURE 8. EQUIVALENT INPUT NOISE vs BANDWIDTH (WITH 10Hz HIGH PASS FILTER)

FIGURE 10. OPEN LOOP FREQUENCY AND PHASE RESPONSE

NOTE: External compensation components are not required for stability, but may be added to reduce bandwidth if desired.

FIGURE 12. OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMPENSATION PIN TO GROUND

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 13. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

FIGURE 14. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 15. POWER SUPPLY CURRENT vs TEMPERATURE

Die Characteristics

DIE DIMENSIONS:
57 mils $\times 65$ mils $\times 19$ mils $1450 \mu \mathrm{~m} \times 1650 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:
Type: Al, 1\% Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

PASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5\% Phos.)
Silox Thickness: $12 k \AA \pm 2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

SUBSTRATE POTENTIAL (POWERED UP):
Unbiased
TRANSISTOR COUNT:
40

PROCESS:

Bipolar Dielectric Isolation

Metallization Mask Layout

Dual-In-Line Plastic Packages (PDIP)

$-\mathrm{B}-\mathrm{C}$

NOTES:

1. Controlling Dimensions: INCH. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $\mathrm{A}, \mathrm{A} 1$ and L are measured with the package seated in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch (0.25 mm).
6. E and e_{A} are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$.
7. e_{B} and e_{C} are measured at the lead tips with the leads unconstrained. e_{C} must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25 mm).
9. N is the maximum number of terminal positions.
10. Corner leads ($1, \mathrm{~N}, \mathrm{~N} / 2$ and $\mathrm{N} / 2+1$) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).

E8.3 (JEDEC MS-001-BA ISSUE D) 8 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8, 10
C	0.008	0.014	0.204	0.355	-
D	0.355	0.400	9.01	10.16	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	0.10	BSC	2.5	BSC	-
e_{A}	0.30	BSC	7.6	BSC	6
e_{B}	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	8		8		9

Rev. 0 12/93

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

