

HD74AC123A

Dual Retriggerable Resettable Multivibrator

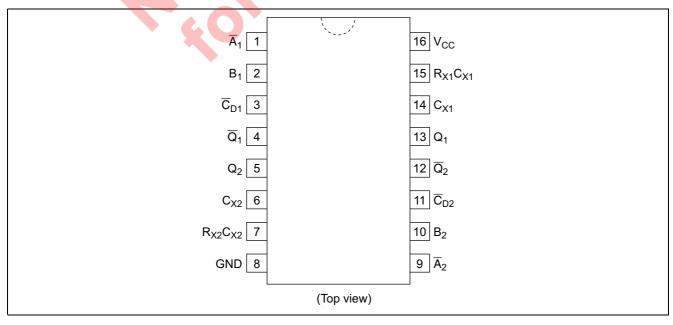
REJ03D0245-0200Z (Previous ADE-205-365 (Z)) Rev.2.00 Jul.16.2004

Description

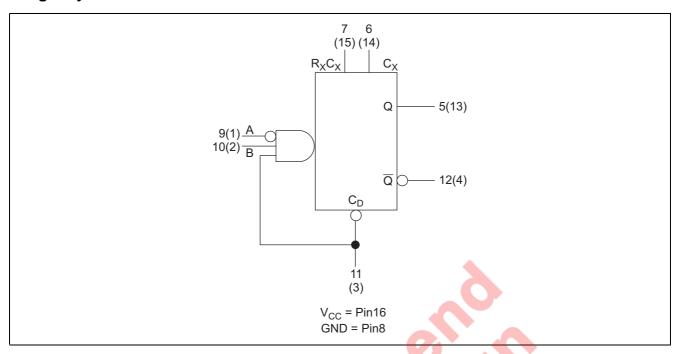
Each half of the HD74AC123A features retriggerable capability, complementary dc level triggering and overriding Direct Clear. When a circuit is in the quasi-stable (delay) state, another trigger applied to the inputs (per the Truth Table) will cause the delay period to start again, without disturbing the outputs. By repeating this process, the output pulse period (Q High, \overline{Q} Low) can be made as long as desired. Alternatively, a delay period can be terminated at any time by a Low signal on \overline{C}_D , which also inhibits triggering. An internal connection from \overline{C}_D to the input gate makes it possible to trigger the circuit by a positive-going signal on \overline{C}_D , as shown in the Truth Table. For timing capacitor values greater than 1000 pF, the output pulse width is defined as follows.

Where t_w is in ns, R_X is in $k\Omega$ and C_X is in pF. $t_w = R_X C_X$

Features


- Outputs Source/Sink 24 mA
- Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
HD74AC123AP	DIP-16 pin	DP-16E, -16FV	P	_
HD74AC123AFPEL	SOP-16 pin (JEITA)	FP-16DAV	FP	EL (2,000 pcs/reel)
HD74AC123ARPEL	SOP-16 pin (JEDEC)	FP-16DNV	RP	EL (2,500 pcs/reel)


Notes: 1. Please consult the sales office for the above package availability.

2. The packages with lead-free pins are distinguished from the conventional products by adding V at the end of the package code.

Pin Arrangement

Logic Symbol

Pin Names

$\overline{A}_1, \overline{A}_2$	Trigger Inputs (Active Falling Edge
B_1, B_2	Trigger Inputs (Active Rising Edge)
$\overline{\mathrm{C}}_{\mathrm{D1}}, \overline{\mathrm{C}}_{\mathrm{D2}}$	Direct Clear Inputs (Active Low)
Q_1, Q_2	Positive Pulse Outputs
$\overline{\mathbf{Q}}_{1}, \overline{\mathbf{Q}}_{2}$	Negative Pulse Outputs

Triggering Truth Table

Inputs	•			
Α		В	$\overline{\mathbf{C}}_{\mathtt{D}}$	Response
X	X		L	No trigger
	L		X	No trigger
	Н		Н	Trigger
Н			X	No trigger
L	5		Н	Trigger
L	Н			Trigger

H: High Voltage Level L: Low Voltage Level

X : Immaterial

Low-to-High Transition
High-to-Low Transition

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Condition
Supply voltage	V _{cc}	-0.5 to 7	V	
DC input diode current	I _{IK}	-20	mA	V ₁ = -0.5V
		20	mA	V ₁ = Vcc+0.5V
DC input voltage	V _I	-0.5 to Vcc+0.5	V	
DC output diode current	I _{ok}	-50	mA	V _O = -0.5V
		50	mA	$V_O = Vcc+0.5V$
DC output voltage	V _o	-0.5 to Vcc+0.5	V	
DC output source or sink current	Io	±50	mA	
DC V _{CC} or ground current per output pin	I _{CC} , I _{GND}	±50	mA	
Storage temperature	Tstg	-65 to +150	°C	

Recommended Operating Conditions

Item	Symbol	Ratings	Unit	Condition
Supply voltage	V _{CC}	2 to 6	V	
Input and output voltage	V_{I}, V_{O}	0 to V _{cc}	V	
Operating temperature	Та	-40 to +85	°C	
Input rise and fall time	tr, tf	8	ns/V	V _{CC} = 3.0V
(except Schmitt inputs)				V _{CC} = 4.5 V
V_{IN} 30% to 70% V_{CC}				V _{CC} = 5.5 V

DC Characteristics

Item	Sym- bol	Vcc (V)	7	Ta = 25°0			-40 to 5°C	Unit	Condition
			min.	typ.	max.	min.	max.		
Input Voltage	V _{IH}	3.0	2.1	1.5	- 1	2.1	_	V	$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
		4.5	3.15	2.25	_	3.15			
		5.5	3.85	2.75	_	3.85	—		
	V_{IL}	3.0	_	1.50	0.9	_	0.9		$V_{OUT} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
		4.5		2.25	1.35	_	1.35		
		5.5	_	2.75	1.65	_	1.65		
Output voltage	V _{OH}	3.0	2.9	2.99	_	2.9		V	$V_{IN} = V_{IL}$ or V_{IH}
		4.5	4.4	4.49	_	4.4			$I_{OUT} = -50 \mu A$
		5.5	5.4	5.49	_	5.4	_		
		3.0	2.58		_	2.48	_		$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -12 \text{ mA}$
		4.5	3.94		_	3.80	_		$I_{OH} = -24 \text{ mA}$
		5.5	4.94		_	4.80	_		$I_{OH} = -24 \text{ mA}$
	V _{OL}	3.0	_	0.002	0.1	_	0.1		$V_{IN} = V_{IL}$ or V_{IH}
		4.5	_	0.001	0.1	_	0.1		I _{OUT} = 50 μA
		5.5	_	0.001	0.1	_	0.1		
		3.0	_		0.32	_	0.37		$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OL} = 12 \text{ mA}$
		4.5	_		0.32	_	0.37		I _{OL} = 24 mA
		5.5	_	_	0.32	_	0.37		I _{OL} = 24 mA
Input leakage current	I _{IN}	5.5	_	1	±0.1	_	±1.0	μΑ	$V_{IN} = V_{CC}$ or GND
Dynamic output	I _{OLD}	5.5	_	_	_	86	_	mA	V _{OLD} = 1.1 V
current*	I _{OHD}	5.5	_	_		-75	_	mA	V _{OHD} = 3.85 V
Quiescent supply current	I _{cc}	5.5	_	_	130	_	220	μΑ	$V_{IN} = V_{CC}$ or ground

^{*}Maximum test duration 2.0 ms, one output loaded at a time.

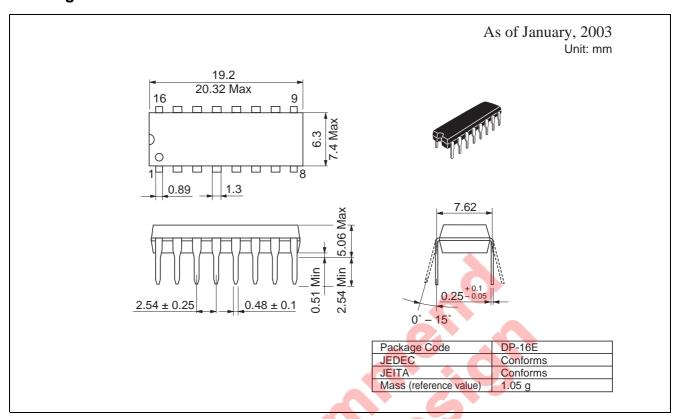
AC Characteristics: HD74AC123A

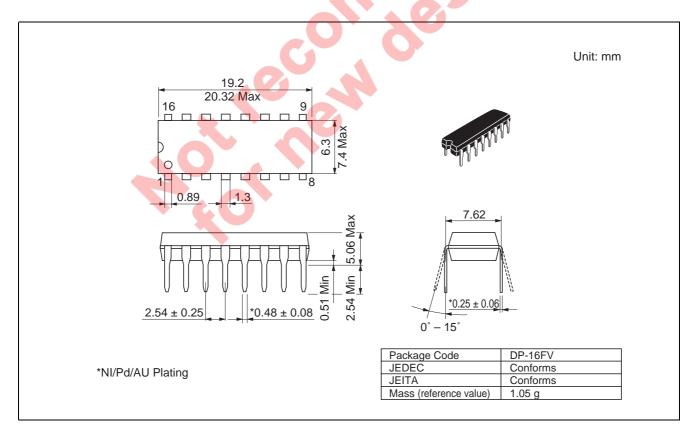
			Ta = +25°C C _L = 50 pF			Ta = -40°C to +85°C C _L = 50 pF			
Item	Symbol	V _{cc} (V)*1	Min	Тур	Max	Min	Max	Unit	Condition
Propagation delay	t _{PLH}	3.3	1.0	_	19.0	1.0	22.0	ns	Cext = 0 pF
A or B to Q		5.0	1.0	_	15.0	1.0	17.0		Rest = $5 \text{ k}\Omega$
Propagation delay	t _{PHL}	3.3	1.0	_	19.0	1.0	22.0	ns	
\overline{A} or B to \overline{Q}		5.0	1.0	_	15.0	1.0	17.0		
Propagation delay	t _{PLH}	3.3	1.0	_	15.0	1.0	18.0	ns	
\overline{C}_{Dn} to \overline{Q}		5.0	1.0	_	12.0	1.0	13.5		
Propagation delay	t _{PHL}	3.3	1.0	_	15.0	1.0	18.0	ns	
\overline{C}_{Dn} to Q		5.0	1.0	_	12.0	1.0	13.5		

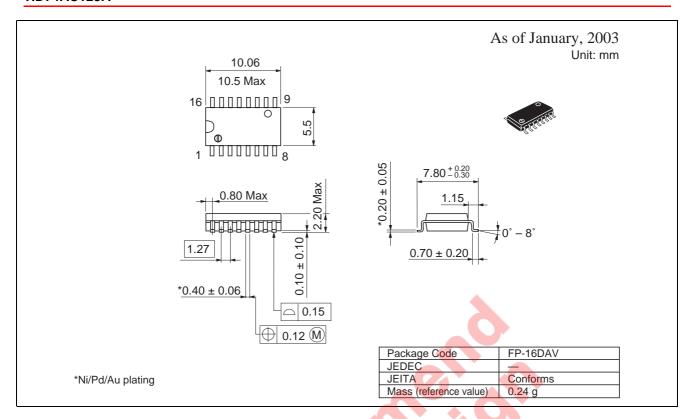
Note: 1. Voltage Range 3.3 is $3.3 \text{ V} \pm 0.3 \text{ V}$ Voltage Range 5.0 is $5.0 \text{ V} \pm 0.5 \text{ V}$

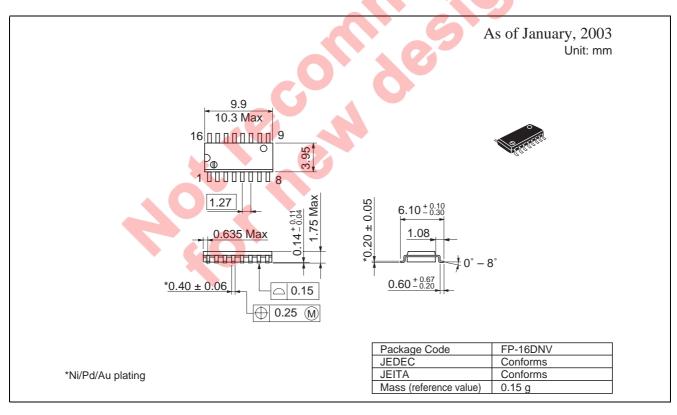
AC Operating Requirements: HD74AC123A

				+25°C 50 pF	Ta = -40 to +85°C C _L = 50 pF		
Item	Symbol	V _{cc} (V)*1	Тур	Guarantee	d Minimum	Unit	Condition
Pulse width	t _w	3.3	_	5.0	7.0	ns	Cext = 0 pF
\overline{A} or B or \overline{C}_{Dn}		5.0	_	4.5	5.0		Rext = $5 \text{ k}\Omega$
Recovery time	t _{rec}	3.3	_	2.0	2.0	ns	
\overline{C}_{Dn} to \overline{A} or B		5.0	_	2.0	2.0		


Note: 1. Voltage Range 3.3 is $3.3 \text{ V} \pm 0.3 \text{ V}$ Voltage Range 5.0 is $5.0 \text{ V} \pm 0.5 \text{ V}$


		. <	Ta = +25°C C _L = 50 pF			Ta = -40°C to +85°C C _L = 50 pF			
Item	Symbol	V _{cc} (V)*1	Min	Тур	Max	Min	Max	Unit	Condition
Output pulse width	T _{WQ}	3.3	_ (\rightarrow	_	_	_	ms	Cext = 0.1 µF
		5.0	0.90	_	1.10	0.85	1.15		Rext = $10 \text{ k}\Omega$
Minimum output	$T_{WQ(min)}$	3.3	190	_	350	170	380	ns	Cext = 28 pF
pulse width		5.0	160	_	300	140	330		R ext = 2 k


Note: 1. Voltage Range 3.3 is $3.3 \text{ V} \pm 0.3 \text{ V}$ Voltage Range 5.0 is $5.0 \text{ V} \pm 0.5 \text{ V}$


Cext and Rext should be connected as close to the IC terminals as possible, in order to prevent malfunction.

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

- therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

 The information described here may contain technical inaccuracies or typographical errors.
 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use.

 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

ENESAS

RENESAS SALES OFFICES

http://www.renesas.com

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

0 000 A D	 	1 70 1 1 1	