ReNESAS

HD74LV4053A

Triple 2-channel Analog Multiplexer / Demultiplexer

REJ03D0339-0300Z
(Previous ADE-205-284A (Z))
Rev.3.00
Jul. 21, 2004

Description

The HD74LV4053A handles both analog and digital signals, and enables signals of either type with amplitudes of up to 5.5 V (peak) to be transmitted in either direction (at $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 5.5 V).

Applications include signal gating, chopping, modulation or demodulation (modem), and signal multiplexing for analog-to-digital and digital-to-analog conversion systems.

Features

- $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to 5.5 V operation
- All control inputs $\mathrm{V}_{\mathrm{IH}}($ Max. $)=5.5 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right.$ to 5.5 V$)$
- Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
HD74LV4053AFPEL	SOP-16 pin (JEITA)	FP-16DAV	FP	EL $(2,000 \mathrm{pcs} / \mathrm{reel})$
HD74LV4053ARPEL	SOP-16 pin (JEDEC)	FP-16DNV	RP	EL $(2,500 \mathrm{pcs} / \mathrm{reel})$
HD74LV4053ATELL	TSSOP-16 pin	TTP-16DAV	T	ELL $(2,000 \mathrm{pcs} / \mathrm{reel})$

Note: Please consult the sales office for the above package availability.

Function Table

Inputs				On Channel
INH	C	B	A	
L	L	L	L	1Y0, 2Y0, 3Y0
L	L	L	H	1Y1, 2Y0, 3Y0
L	L	H	L	1Y0, 2Y1, 3Y0
L	L	H	H	1Y1, 2Y1, 3Y0
L	H	L	L	1Y0, 2Y0, 3Y1
L	H	L	H	1Y1, 2Y0, 3Y1
L	H	H	L	1Y0, 2Y1, 3Y1
L	H	H	H	1Y1, 2Y1, 3Y1
H	X	X	X	NONE

Note: H: High level
L: Low level
X: Immaterial

Pin Arrangement

(Top view)

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage range	$V_{C C}$	-0.5 to 7.0	V	
Input voltage range* ${ }^{* 1}$	V_{1}	-0.5 to 7.0	V	
Output voltage range**, ${ }^{* 1,2}$	V_{0}	-0.5 to $\mathrm{V}_{\mathrm{Cc}}+0.5$	V	Output: H or L
Input clamp current	I_{K}	-20	mA	$\mathrm{V}_{1}<0$
Output clamp current	lok	± 50	mA	$\mathrm{V}_{\mathrm{O}}<0$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{Cc}}$
Continuous output current	Io	± 25	mA	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}
Continuous current through $V_{\text {CC }}$ or GND	$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \text { or } \\ & \mathrm{I}_{\mathrm{GND}} \end{aligned}$	± 50	mA	
Maximum power dissipation at	P_{T}	785	mW	SOP
$\mathrm{Ta}=25^{\circ} \mathrm{C}$ (in still air)**		500		TSSOP
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

1. The input and output voltage ratings may be exceeded even if the input and output clamp-current ratings are observed.
2. This value is limited to 5.5 V maximum.
3. The maximum package power dissipation was calculated using a junction temperature of $150^{\circ} \mathrm{C}$.

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V_{CC}	$2.0^{*^{1}}$	5.5	V	
Input voltage range	V_{I}	0	5.5	V	
Output voltage range	$\mathrm{V}_{I /}$	0	$\mathrm{~V}_{\mathrm{CC}}$	V	
Input transition rise or fall rate	$\Delta \mathrm{t} / \Delta \mathrm{V}$	0	200	$\mathrm{~ns} / \mathrm{V}$	$\mathrm{V}_{\mathrm{CC}}=2.3$ to 2.7 V
		0	100		$\mathrm{~V}_{\mathrm{CC}}=3.0$ to 3.6 V
		0	20		$\mathrm{~V}_{\mathrm{CC}}=4.5$ to 5.5 V
Operating free-air temperature	Ta	-40	85	${ }^{\circ} \mathrm{C}$	

Notes: Unused or floating control inputs must be held high or low.

1. With the supply voltage at or around 2 V , the analog switch on-state resistance loses linearity significantly. It is recommended that only digital signals be transmitted at these low supply voltages.

Logic Diagram

DC Electrical Characteristics

Item	Symbol	V_{cc} (V)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions
			Min	Typ	Max	Min	Max		
Input voltage	V_{IH}	2.0	-	-	-	1.5	-	V	Control input only
		2.3 to 2.7	-	-	-	$\mathrm{V}_{\text {CC }} \times 0.7$	-		
		3.0 to 3.6	-	-	-	$\mathrm{V}_{\text {CC }} \times 0.7$	-		
		4.5 to 5.5	-	-	-	$\mathrm{V}_{\text {CC }} \times 0.7$	-		
	$\overline{\mathrm{V} \text { IL }}$	2.0	-	-	-	-	0.5		
		2.3 to 2.7	-	-	-	-	$\mathrm{V}_{\mathrm{CC}} \times 0.3$		
		3.0 to 3.6	-	-	-	-	$\mathrm{V}_{\mathrm{CC}} \times 0.3$		
		4.5 to 5.5	-	-	-	-	$\mathrm{V}_{\mathrm{CC}} \times 0.3$		
On-state switch resistance	Ron	2.3	-	60	180	-	225	Ω	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
		3.0	-	50	150	-	190		$\mathrm{V}_{\text {INH }}=\mathrm{V}_{\text {IL }}$
		4.5	-	40	75	-	100		$\mathrm{I}_{\mathrm{T}}=2 \mathrm{~mA}$
Peak on resistance	Ron (P)	2.3	-	200	500	-	600	Ω	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ to GND
		3.0	-	90	180	-	225		$\mathrm{V}_{\text {INH }}=\mathrm{V}_{\text {IL }}$
		4.5	-	50	100	-	125		$\mathrm{I}_{\mathrm{T}}=2 \mathrm{~mA}$
Difference of on-state resistance between switches	$\Delta \mathrm{R}_{\text {ON }}$	2.3	-	20	30	-	40	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { to } G N D \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{T}=2 \mathrm{~mA} \end{aligned}$
		3.0	-	10	20	-	30		
		4.5	-	7	15	-	20		
Off-state switch leakage current	Is (OFF)	5.5	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{~V}_{\text {OUT }}=\mathrm{GND} \text { or } \\ & \mathrm{V}_{\text {IN }}=\mathrm{GND}, \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\text {INH }}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$
On-state switch leakage current	Is (ON)	5.5	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{~V}_{\mathrm{INH}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$
Input current	I_{iN}	0 to 5.5	-	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ or GND
Quiescent supply current	I_{CC}	5.5	-	-	-	-	20	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND

Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

Switching Characteristics

Item	Symbol	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions		$\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$	
					FROM (Input)	TO (Output)					
		Min	Typ	Max						Min	Max
Propagation delay time	tpLH	-	2.5	10.0	-	16.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		COM or Yn	$\begin{aligned} & \text { Yn or } \\ & \text { COM } \end{aligned}$
	$\mathrm{t}_{\text {PHL }}$	-	5.0	12.0	-	18.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			
Enable time	tzH	-	7.0	18.0	-	23.0	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	INH	$\begin{aligned} & \text { COM or } \\ & \text { Yn } \end{aligned}$
	tzL	-	9.0	28.0	-	35.0			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Disable time	t_{Hz}	-	9.0	18.0	-	23.0	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	INH	COM orYn
	tLz	-	13.0	28.0	-	35.0			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		

$$
\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}
$$

Item	Symbol	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions		FROM (Input)	TO (Output)
		Min	Typ	Max	Min	Max					
Propagation delay time	$t_{\text {PLH }}$	-	2.0	6.0	-	10.0	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		COM or Yn	Yn or COM
	$t_{\text {PHL }}$	-	4.0	9.0	-	12.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			
Enable time	t_{zH}	-	5.0	12.0	-	15.0	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	INH	COM or Yn
	t_{ZL}	-	7.0	20.0	-	25.0			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
Disable time	$t_{H Z}$	-	7.0	12.0	-	15.0	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	INH	$\begin{aligned} & \text { COM or } \\ & \text { Yn } \end{aligned}$
	tLz	-	10.0	20.0	-	25.0			$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		

Switching Characteristics (cont.)

Item	Symbol	Vcc (V)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			Unit	Test Conditions	FROM(Input)	TO (Output)
			Min	Typ	Max				
Control input capacitance	$\mathrm{C}_{\text {IC }}$	-	-	4.5	-	pF			
Common terminal capacitance	$\mathrm{ClS}_{\text {IS }}$	-	-	12.5	-	pF			
Switch terminal capacitance	$\mathrm{Cl}_{1 /}$	-	-	7.0	-	pF			
Feedthrough capacitance	$\mathrm{C}_{\text {T }}$	-	-	0.5	-	pF			
Power dissipation capacitance	$\mathrm{CrPD}^{\text {P }}$	-	-	9.0	-	pF			
Frequency response (Switch ON)		2.3	-	30.0	-	MHz	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at output when $f_{\text {in }}$ is 1 MHz (sine wave). Increase f_{in} frequency until the dB -meter reads -3 dBm . $20 \log \left(V_{0} / V_{1}\right)=-3 \mathrm{dBm}$	$\begin{aligned} & \mathrm{COM} \\ & \text { or Yn } \end{aligned}$	$\begin{aligned} & \text { Yn or } \\ & \text { COM } \end{aligned}$
		3.0	-	35.0	-				
		4.5	-	50.0	-				
Crosstalk (Between any switches)		2.3	-	-45.0	-	dB	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at input when $\mathrm{f}_{\text {in }}$ is 1 MHz (sine wave).	COM	Yn
		3.0	-	-45.0	-				
		4.5	-	-45.0	-				
Crosstalk (Control input to signal output)		2.3	-	20.0	-	mV	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ Adjust R_{L} value to obtain 0 A at Inoout when $f_{\text {in }}$ is 1 MHz (square wave).	INH	$\begin{aligned} & \text { COM or } \\ & \text { Yn } \end{aligned}$
		3.0	-	35.0	-				
		4.5	-	65.0	-				
Feedthrough attenuation (Switch OFF)		2.3	-	-45	-	dB	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega$ Adjust $f_{\text {in }}$ voltage to obtain 0 dBm at input when $\mathrm{f}_{\text {in }}$ is 1 MHz (sine wave).	$\begin{aligned} & \text { COM } \\ & \text { or Yn } \end{aligned}$	$\begin{aligned} & \text { Yn or } \\ & \text { COM } \end{aligned}$
		3.0	-	-45	-				
		4.5	-	-45	-				
Sine-wave distortion		2.3	-	0.1	-	\%	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{f}_{\mathrm{IN}}=1 \mathrm{kHz} \text { (sine wave) } \\ & \mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=2.5 \mathrm{~V}, \mathrm{P}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \hline \end{aligned}$	COM or Yn	Yn or COM
		3.0	-	0.1	-				
		4.5	-	0.1	-				

Test Circuits

R_{ON} : On-state switch resistance

$$
\mathrm{R}_{\mathrm{ON}}=\frac{\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}}{2 \times 10^{-3}}(\Omega)
$$

Is (OFF): Off-state switch leakage current, Is (ON): On-state switch leakage current

$t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$: Propagation delay time (from switch input to switch output)

Switching time

TEST	S1	S2
$\mathrm{t}_{\mathrm{LZ}} / \mathrm{t}_{\mathrm{zL}}$	GND	Vcc
$\mathrm{t}_{\mathrm{HZ}} / \mathrm{t}_{\mathrm{ZH}}$	Vcc	GND

Frequency response (Switch ON)

Crosstalk (Between any switches)

Crosstalk (Control input to signal output)

Feedthrough attenuation (Switch OFF)

Sine-wave distortion

Package Dimensions

As of January, 2003
Unit: mm

*Ni/Pd/Au plating

Package Code	FP-16DNV
JEDEC	Conforms
JEITA	Conforms
Mass (reference value)	0.15 g

*Ni/Pd/Au plating

Package Code	TTP-16DAV
JEDEC	-
JEITA	-
Mass (reference value)	0.05 g

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6--2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
(i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
2. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
3. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials
4. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest produc formation before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com)
5. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
6. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
7. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
8. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
9. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501
Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900
Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

