HD74LVC1G53

2-channel Analog Multiplexer/Demultiplexer

REJ03D0155-0300Z
Rev. 3.00
Jul. 02, 2004

Description

The HD74LVC1G53 has 2-channel analog multiplexer/demultiplexer in a 6-pin package. Applications include signal gating chopping, modulation or demodulation (modem), and signal multiplexing for analog to digital to analog conversion systems. Low voltage and high-speed operation is suitable for the battery powered products (e.g., notebook computers), and the low power consumption extends the battery life.

Features

- The basic gate function is lined up as renesas uni logic series.
- Supply voltage range: 1.65 to 5.5 V

Operating temperature range: -40 to $+85^{\circ} \mathrm{C}$

- Control input: $\mathrm{V}_{\mathrm{IH}}($ Max. $)=5.5 \mathrm{~V}\left(@ \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}\right.$ to 5.5 V$)$
- Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
HD74LVC1G53CPE	WCSP-6 pin	TBS-6V	CP	E (3,000 pcs/reel)
HD74LVC1G53CLE		TBS-6AV	CL	

Article Indication

Marking Mear code

Function Table

Control	On channel 1
L	Y_{0}
H	Y_{1}

H: High level
L: Low level

Pin Arrangement

Logic Diagram

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions
Supply voltage range	V_{CC}	-0.5 to 6.5	V	
Input voltage range ${ }^{{ }^{1}}$	$\mathrm{~V}_{\mathrm{I}}$	-0.5 to 6.5	V	
Output voltage range ${ }^{* 1,2}$	$\mathrm{~V}_{\mathrm{O}}$	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V	Output $: \mathrm{H}$ or L
Control Input clamp current	I_{K}	-50	mA	$\mathrm{~V}_{\mathrm{l}}<0$
Output clamp current	I_{KK}	± 50	mA	$\mathrm{~V}_{\mathrm{O}}<0$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$
Continuous output current	I_{O}	± 50	mA	$\mathrm{~V}_{\mathrm{O}}=0$ to V_{CC}
Continuous current through V_{CC} or GND	I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	± 100	mA	
Package Thermal impedance	θ_{ja}	143	${ }^{\circ} \mathrm{C} / \mathrm{W}$	CP
		123	CL	
Storage temperature	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$	

Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This value is limited to 5.5 V maximum.

Recommended Operating Conditions

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V_{cc}	1.65	5.5	V	
Control Input voltage range	V_{1}	0	5.5	V	
Input/Output voltage range	$\mathrm{V}_{1 / \mathrm{O}}$	0	V_{cc}	V	
Input transition rise or fall rate	$\Delta t / \Delta v$		20	ns / V	$\begin{aligned} & \mathrm{V} \mathrm{CC}= 1.65 \text { to } 1.95 \mathrm{~V}, \\ & 2.3 \text { to } 2.7 \mathrm{~V} \end{aligned}$
		0	10		$\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V
		0	10		$\mathrm{V}_{\mathrm{cc}}=4.5$ to 5.5 V
Operating free-air temperature	T_{a}	-40	85	${ }^{\circ} \mathrm{C}$	

Note: Unused or floating inputs must be held high or low.

Electrical Characteristics

$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$

Note: 1. $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Switching Characteristics

$$
\mathrm{V}_{\mathrm{CC}}=1.8 \pm 0.15 \mathrm{~V}
$$

Item	Symbol	$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions	$\begin{aligned} & \hline \text { FROM } \\ & \text { (Input) } \end{aligned}$	TO (Output)
		Min	Max				
Propagation delay time*1	$\begin{array}{\|l\|} \hline t_{\text {PLH }} \\ t_{\text {PHL }} \\ \hline \end{array}$	-	2.0	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$	COM or Yn	Yn or COM
Enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{t} \mathrm{H}} \\ & \mathrm{t}_{\mathrm{t}} \end{aligned}$	2.9	10.3		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$	A	Yn
Disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{tzz}} \\ & \mathrm{t}_{\mathrm{Lz}} \end{aligned}$	2.1	9.4		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega$	A	Yn

$\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V}$

Item	Symbol	$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions	$\begin{aligned} & \text { FROM } \\ & \text { (Input) } \\ & \hline \end{aligned}$	TO (Output)
		Min	Max				
Propagation delay time* ${ }^{1}$	$\mathrm{t}_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	-	1.2	ns	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	COM or Yn	Yn or COM
Enable time	$\begin{aligned} & \mathrm{t}_{\mathrm{z} \mathrm{H}} \\ & \mathrm{t}_{\mathrm{ZL}} \end{aligned}$	2.1	7.2		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	A	Yn
Disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{tHz}} \\ & \mathrm{t}_{\mathrm{LZ}} \end{aligned}$	1.4	7.9		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	A	Yn

$\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V}$

Item	ymbol	Ta $=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions	FROM (Input)	TO (Output)
		Min	Max				
Propagation delay time ${ }^{* 1}$	$t_{\text {PLL }}$ $\mathrm{t}_{\mathrm{PHL}}$	-	0.8	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	COM or Yn	Yn or COM
Enable time	$\begin{array}{\|l\|l\|} \hline \mathrm{t}_{\mathrm{zH}} \\ \mathrm{t}_{\mathrm{zL}} \\ \hline \end{array}$	1.9	5.8		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	A	Yn
Disable time	$\begin{array}{\|l\|l\|} \mathrm{t}_{\mathrm{Hz}} \\ \mathrm{t}_{\mathrm{Lz}} \end{array}$	1.1	7.2		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	A	Yn

$\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$

Item	Symbol	$\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$		Unit	Test Conditions	FROM (Input)	TO (Output)
		Min	Max				
Propagation delay time ${ }^{*^{1}}$	$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	-	0.6	ns	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	COM or Yn	Yn or COM
Enable time	t_{ZH} t_{zL}	1.3	5.4		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	A	Yn
Disable time	$\begin{aligned} & \mathrm{t}_{\mathrm{HZ}} \\ & \mathrm{t}_{\mathrm{LZ}} \end{aligned}$	1.0	5.0		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$	A	Yn

Notes: 1. The propagation delay is calculated RC time constant of typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

Analog Switch Characteristics

Item	V_{cc} (V)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			Unit	Test conditions		FROM (Input)	TO (Output)
		Min	Typ	Max					
Frequency response (Switch ON)	1.65	-	35	-	MHz	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	Adjust fin voltage to obtain OdBm at output when fin is 1 MHz (sine wave). Increase fin frequency until the dB -meter reads -3 dBm . $20 \log \left(V_{0} / V_{1}\right)=-3 \mathrm{dBm}$	COM or Y	Y or COM
	2.3	-	120	-					
	3.0	-	190	-					
	4.5	-	215	-					
	1.65	-	>300	-		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$			
	2.3	-	>300	-					
	3.0	-	>300	-					
	4.5	-	>300	-					
Crosstalk (between switches)	1.65	-	-58	-	dB	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	Adjust fin voltage to obtain OdBm at input when fin is 1 MHz (sine wave).	COM	Y
	2.3	-	-58	-					
	3.0	-	-58	-					
	4.5	-	-58	-					
	1.65	-	-42	-		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$			
	2.3	-	-42	-					
	3.0	-	-42	-					
	4.5	-	-42	-					
Crosstalk (Control input to signal output)	1.65	-	35	-	mV	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	Adjust RL value to obtain OA at linfout when fin is 1 MHz (square wave)	A	$\begin{aligned} & \mathrm{Y} \text { or } \\ & \mathrm{COM} \end{aligned}$
	2.3	-	50	-					
	3.0	-	70	-					
	4.5	-	100	-					
Feed through attenuation (Switch OFF)	1.65	-	-58	-	dB	$\begin{aligned} & C_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=600 \Omega \end{aligned}$	Adjust fin voltage to obtain OdBm at input when fin is 1 MHz (sine-wave)	COM or Y	$\begin{aligned} & \mathrm{Y} \text { or } \\ & \mathrm{COM} \end{aligned}$
	2.3	-	-58	-					
	3.0	-	-58	-					
	4.5	-	-58	-					
	1.65	-	-42	-		$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$			
	2.3	-	-42	-					
	3.0	-	-42	-					
	4.5	-	-42	-					
Sine-wave distortion	1.65	-	0.1	-	\%	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { fin }=1 \mathrm{kHz} \\ & \text { (sine-wave) } \\ & \hline \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \text { fin }=10 \mathrm{kHz} \\ & \text { (sine-wave) } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1}=1.4 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, \mathrm{~V}_{\mathrm{CC}}=1.65 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{l}}=2.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V} \\ & \mathrm{~V}_{1}=2.5 \mathrm{~V}_{\text {P-P }}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{l}}=4.0 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, \mathrm{~V}_{\mathrm{cc}}=4.5 \mathrm{~V} \end{aligned}$	COM or Y	$\begin{aligned} & \mathrm{Y} \text { or } \\ & \mathrm{COM} \end{aligned}$
	2.3	-	0.025	-					
	3.0	-	0.015	-					
	4.5	-	0.01	-					
	1.65	-	0.15	-					
	2.3	-	0.025	-					
	3.0	-	0.015	-					
	4.5	-	0.01	-					

Operating Characteristics

Item	Symbol	Vcc (V)	$\mathrm{Ta}=25^{\circ} \mathrm{C}$			Unit	Test Conditions
			Min	Typ	Max		
Power dissipation capacitance	$\mathrm{C}_{\text {PD }}$	1.8	-	9	-	pF	$\mathrm{f}=10 \mathrm{MHz}$
		2.5	-	10	-		
		3.3	-	10	-		
		5.0	-	12	-		

Test Circuit

- I_{S} (off), I_{S} (on)

Test Circuit (cont.)

Frequency response (Switch ON)

Crosstalk (Between any switches)

$V_{c c} / 2$

Crosstalk (Control input to signal output)

Feedthrough attenuation (Switch OFF)

Sine-wave distortion

Package Dimensions

TBS-6V

EIAJ Package Code	JEDEC Code	Mass (g)	Lead Material
-	-	0.001	-

Symbol	Dimension in Millimeters		
	Min	Typ	Max
A		-	0.50
$\mathrm{~A}_{1}$	0.10	-	0.15
$\mathrm{~A}_{2}$		-	0.35
b	0.15	0.17	0.19
D	-	0.90	-
E	-	1.40	-
e	-	0.50	-
x	-	-	0.05
y	-	-	0.05
y_{1}	-	-	0.20
ZD	-	0.20	
ZE	-	0.20	

TBS-6AV

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2--6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
(i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
2. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's
application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
3. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com)
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life s potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
7. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein

RENESAS

RENESAS SALES OFFICES

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501
Renesas Technology Europe Limited.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900
Renesas Technology Europe GmbH
Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65>6213-0200, Fax: <65> 6278-8001

