DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF40161B MSI
 4-bit synchronous binary counter with asynchronous reset

Product specification
File under Integrated Circuits, IC04

PHILIPS

4-bit synchronous binary counter with asynchronous reset

DESCRIPTION

The HEF40161B is a fully synchronous edge-triggered 4-bit binary counter with a clock input (CP), an overriding asynchronous master reset (MR), four parallel data inputs (P_{0} to P_{3}), three synchronous mode control inputs (parallel enable (PE), count enable parallel (CEP) and count enable trickle (CET)), buffered outputs from all four bit positions $\left(\mathrm{O}_{0}\right.$ to O_{3}) and a terminal count output (TC).

Operation is fully synchronous (except for the $\overline{M R}$ input) and occurs on the LOW to HIGH transition of CP. When $\overline{\mathrm{PE}}$ is LOW, the next LOW to HIGH transition of CP loads data into the counter from P_{0} to P_{3} regardless of the levels of CEP and CET inputs.

When $\overline{\mathrm{PE}}$ is HIGH, the next LOW to HIGH transition of CP advances the counter to its next state only if both CEP and CET are HIGH; otherwise, no change occurs in the state of the counter. TC is HIGH when the state of the counter is $15\left(\mathrm{O}_{1}\right.$ to $\left.\mathrm{O}_{3}=\mathrm{HIGH}\right)$ and when CET is HIGH. A LOW on $\overline{\mathrm{MR}}$ sets all outputs (O_{0} to O_{3} and TC) LOW, independent of the state of all other inputs. Multistage synchronous counting is possible without additional components by using a carry look-ahead counting technique; in this case, TC is used to enable successive cascaded stages. CEP, CET and $\overline{\text { PE }}$ must be stable only during the set-up time before the LOW to HIGH transition of CP.

Fig. 1 Functional diagram.

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications
3
G661. Kıenuep

Fig. 2 Logic diagram

[^0]

Fig. 3 Pinning diagram.

HEF40161BP(N): 16-lead DIL; plastic (SOT38-1)
HEF40161BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF40161BT(D): 16-lead SO; plastic (SOT109-1)
(): Package Designator North America

SYNCHRONOUS MODE SELECTION

$\overline{\text { PE }}$	CEP	CET	MODE
L	X	X	preset
H	L	X	no change
H	X	L	no change
H	H	H	count

Notes

1. $\overline{\mathrm{MR}}=\mathrm{HIGH}$
2. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)
3. $L=L O W$ state (the less positive voltage)
4. $X=$ state is immaterial

PINNING

$\overline{\mathrm{PE}}$	parallel enable input
P_{0} to P_{3}	parallel data inputs
CEP	count enable parallel input
CET	count enable trickle input
CP	clock input (LOW to HIGH, edge-triggered)
$\overline{\mathrm{MR}}$	master reset input (active LOW)
O_{0} to O_{3}	parallel outputs
TC	terminal count output

TERMINAL COUNT GENERATION

CET	$\left(\mathbf{O}_{\mathbf{0}} \cdot \mathbf{O}_{\mathbf{1}} \cdot \mathbf{O}_{\mathbf{2}} \cdot \mathbf{O}_{3}\right)$	TC
L	L	L
L	H	L
H	L	L
H	H	H

Note

1. $\mathrm{TC}=\mathrm{CET} \cdot \mathrm{O}_{0} \cdot \mathrm{O}_{1} \cdot \mathrm{O}_{2} \cdot \mathrm{O}_{3}$

Fig. 4 State diagram.

4-bit synchronous binary counter with

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{gathered} \mathbf{V}_{\mathrm{DD}} \\ \mathbf{V} \end{gathered}$	TYPICAL FORMULA FOR P ($\mu \mathrm{W}$)	
Dynamic power dissipation per package (P)	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\begin{aligned} & 1200 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D}{ }^{2} \\ & 5600 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D}{ }^{2} \\ & 16000 f_{i}+\sum\left(f_{o} C_{L}\right) \times V_{D D^{2}} \end{aligned}$	where $\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz) $\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz) $\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF) $\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs $\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$\begin{aligned} & \mathbf{V}_{\mathrm{DD}} \\ & \mathbf{V} \end{aligned}$	SYMBOL	MIN. TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{CP} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 110 \\ 45 \\ 30 \end{array}$	$\begin{array}{r} 220 \\ 90 \\ 60 \end{array}$	ns ns ns	$\begin{aligned} & 83 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 34 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 22 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	tple	$\begin{array}{r} 115 \\ 45 \\ 35 \end{array}$	$\begin{array}{r} 230 \\ 95 \\ 65 \end{array}$	ns ns ns	$\begin{aligned} & 88 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 34 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\mathrm{CP} \rightarrow \mathrm{TC}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 130 \\ 55 \\ 35 \end{array}$	$\begin{array}{r} 260 \\ 105 \\ 75 \end{array}$	ns ns ns	$\begin{array}{r} 103 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{array}{r} \hline 140 \\ 55 \\ 40 \\ \hline \end{array}$	$\begin{array}{r} \hline 280 \\ 115 \\ 80 \end{array}$	ns ns ns	$\begin{array}{r} \hline 113 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 44 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 32 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
$\mathrm{CET} \rightarrow \mathrm{TC}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 105 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 210 \\ 100 \\ 75 \end{array}$	ns ns ns	$\begin{aligned} & 78 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PLH }}$	$\begin{aligned} & 90 \\ & 35 \\ & 25 \end{aligned}$	$\begin{array}{r} 185 \\ 70 \\ 50 \end{array}$	ns ns ns	$\begin{aligned} & 63 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 24 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\overline{\overline{\mathrm{MR}} \rightarrow \mathrm{O}_{\mathrm{n}}}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 120 \\ 50 \\ 35 \end{array}$	$\begin{array}{r} 245 \\ 100 \\ 70 \end{array}$	ns ns ns	$\begin{aligned} & 93 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 39 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 27 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
$\overline{\mathrm{MR}} \rightarrow \mathrm{TC}$ HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{array}{r} 145 \\ 60 \\ 45 \\ \hline \end{array}$	$\begin{array}{r} 295 \\ 120 \\ 85 \\ \hline \end{array}$	ns ns ns	$\begin{array}{r} 118 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 49 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 37 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ \hline \end{array}$

4-bit synchronous binary counter with

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Minimum clock pulse width; LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\mathrm{WCPL}}$	$\begin{array}{r} 100 \\ 40 \\ 30 \end{array}$	50 20 15	ns ns ns	see also waveforms Figs 5, 6, 7 and 8
Minimum $\overline{\mathrm{MR}}$ pulse width; LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WMRL }}$	$\begin{array}{r} 100 \\ 40 \\ 30 \end{array}$	50 20 15	ns ns ns	
Recovery time for $\overline{\mathrm{MR}}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {RMR }}$	$\begin{aligned} & 25 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	ns ns ns	
Set-up times $\mathrm{P}_{\mathrm{n}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{s u}$	$\begin{array}{r} 110 \\ 40 \\ 30 \end{array}$	55 20 15	ns ns ns	
$\overline{\mathrm{PE}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{array}{r} 120 \\ 40 \\ 25 \end{array}$	$\begin{aligned} & 60 \\ & 20 \\ & 10 \end{aligned}$	ns ns ns	
CEP, CET \rightarrow CP	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{array}{r} 260 \\ 100 \\ 70 \end{array}$	130 50 35	ns ns ns	
Hold times $P_{n} \rightarrow C P$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{array}{r} \hline 20 \\ 10 \\ 5 \end{array}$	$\begin{aligned} & \hline-35 \\ & -10 \\ & -10 \end{aligned}$	ns ns ns	
$\overline{\mathrm{PE}} \rightarrow \mathrm{CP}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{array}{r} 15 \\ 5 \\ 5 \end{array}$	$\begin{aligned} & \hline-45 \\ & -15 \\ & -10 \end{aligned}$	ns ns ns	
CEP, CET \rightarrow CP	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	thold	$\begin{aligned} & 25 \\ & 15 \\ & 10 \end{aligned}$	$\begin{array}{r} -105 \\ -35 \\ -25 \end{array}$	ns ns ns	

4-bit synchronous binary counter with

	$\mathbf{V}_{\text {DD }}$	SYMBOL	MIN.	TYP.	MAX.	
Maximum clock	5		2,5	5	MHz	
pulse frequency	10	$\mathrm{f}_{\text {max }}$	7	14	MHz	
	15		9	18	MHz	

Conditions
$\overline{\mathrm{PE}}=$ LOW
P_{0} to $\mathrm{P}_{3}=\mathrm{HIGH}$

Condition: $\overline{\mathrm{PE}}=\overline{\mathrm{MR}}=\mathrm{HIGH}$.
Fig. 6 Waveforms showing set-up times and hold times for CEP and CET

inputs.

4-bit synchronous binary counter with

Note

Set-up and hold times are shown as positive values but may be specified as negative values.

4-bit synchronous binary counter with

Fig. 9 Timing diagram.

APPLICATION INFORMATION

An example of an application for the HEF40161B is:

- Programmable binary counter.

[^0]:

